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Codage conjoint source-chiffrement-canal pour les canaux de
communication vocaux sécurisés en temps réel

Résumé

Les risques croissants de violation de la vie privée et d’espionnage associés à la forte crois-
sance des communications mobiles ont ravivé l’intérêt du concept originel de chiffrement de
la parole sous forme de signaux audio transmis sur des canaux vocaux non spécifiques. Les
méthodes habituelles utilisées pour la transmission de données cryptées par téléphonie analo-
gique se sont révélées inadaptées pour les communications vocales modernes (réseaux cellu-
laires, VoIP) avec leurs algorithmes de compression de la voix, de détection d’activité vocale
et de suppression adaptative du bruit. La faible bande passante disponible, les distorsions non
linéaires des canaux et les phénomènes d’évanouissements du signal motivent l’introduction
d’une approche conjointe du codage et du chiffrement de la parole adaptée aux distorsions in-
troduites par les canaux vocaux modernes.
Dans cette thèse sont développés, analysés et validés divers schémas sûrs et efficaces pour le
chiffrement et la transmission de la parole en temps réel pour les canaux vocaux modernes.
En plus du chiffrement de la parole, cette étude couvre les aspects sécurité et algorithmique de
l’ensemble du système de communication vocale - aspects critiques d’un point de vue indus-
triel.
La thèse détaille un système de chiffrement de la parole associé à un codage avec perte, par
brouillage aléatoire des paramètres vocaux (volume, hauteur, timbre) de certaines représenta-
tions de la parole. En résulte un pseudo-signal vocal chiffré robuste aux erreurs ajoutées par
les canaux de transmission modernes. La technique de chiffrement repose sur l’introduction
de translations et rotations aléatoires sur des maillages de tores plats associés à des codes
sphériques. Face aux erreurs de transmission, le schéma déchiffre approximativement les para-
mètres vocaux et reconstruit, grâce à un synthétiseur vocal utilisant un réseau de neurones par
apprentissage, un signal de parole perceptuellement très proche du signal d’origine. Le dispo-
sitif expérimental a été validé par la transmission de signaux de type pseudo-voix chiffrés sur
un canal vocal réel. Les signaux de parole déchiffrés ont été favorablement notés lors d’une
évaluation subjective de qualité incluant environ 40 participants.
La thèse décrit également une nouvelle technique de transmission de données sur canaux vo-
caux en utilisant un dictionnaire d’ondes harmoniques courtes représentant les mots d’un code
quaternaire. La technique fournit un débit binaire variable allant jusqu’à 6.4 kbps et a été testée
avec succès sur différents canaux vocaux réels. Enfin, est présenté aussi un protocole d’échange
de clés cryptographiques dédié pour les canaux vocaux authentifiés par signatures et vérifica-
tion vocale. La sécurité du protocole a été vérifiée sous forme d’un modèle symbolique par
l’assistant de preuve formelle Tamarin.
L’étude conclut qu’une communication vocale sécurisée sur des canaux vocaux numériques
réels est techniquement et de fait viable lorsque les canaux vocaux utilisés pour la communi-
cation sont suffisamment stables et ne présentent que des distorsions prévisibles.

Mots-clés : Communications vocales sécurisées, Données sur les canaux vocaux, Chiffrement de
la voix, Codage conjoint de la parole, Vérification formelle, Sécurité sémantique.
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Joint source-cryptographic-channel coding for real-time secure voice
communications on voice channels

Abstract

The growing risk of privacy violation and espionage associated with the rapid spread of mo-
bile communications renewed interest in the original concept of sending encrypted voice as
audio signal over arbitrary voice channels. The usual methods used for encrypted data trans-
mission over analog telephony turned out to be inadequate for modern vocal links (cellular
networks, VoIP) equipped with voice compression, voice activity detection, and adaptive noise
suppression algorithms. The limited available bandwidth, nonlinear channel distortion, and
signal fadings motivate the investigation of a dedicated, joint approach for speech encoding
and encryption adapted to the distortion introduced by modern voice channels.
This thesis aims to develop, analyze, and validate secure and efficient schemes for real-time
speech encryption and transmission via modern voice channels. In addition to speech encryp-
tion, this study covers the security and operational aspects of the whole voice communication
system, as this is relevant from an industrial perspective.
The thesis introduces a joint speech encryption scheme with lossy encoding, which randomly
scrambles the vocal parameters of some speech representation (loudness, pitch, timbre) and
outputs an encrypted pseudo-voice signal robust against channel distortion. The enciphering
technique is based on random translations and random rotations using lattices and spherical
codes on flat tori. Against transmission errors, the scheme decrypts the vocal parameters ap-
proximately and reconstructs a perceptually analogous speech signal with the help of a trained
neural-based voice synthesizer. The experimental setup was validated by sending encrypted
pseudo-voice over a real voice channel, and the decrypted speech was tested using subjective
quality assessment by a group of about 40 participants.
Furthermore, the thesis describes a new technique for sending data over voice channels that re-
lies on short harmonic waveforms representing quaternary codewords. This technique achieves
a variable bitrate up to 6.4 kbps and has been successfully tested over various real voice chan-
nels. Finally, the work considers a dedicated cryptographic key exchange protocol over voice
channels authenticated by signatures and a vocal verification. The protocol security has been
verified in a symbolic model using Tamarin Prover.
The study concludes that secure voice communication over real digital voice channels is tech-
nically viable when the voice channels used for communication are stationary and introduce
distortion in a predictable manner.

Keywords: Secure Voice Communications, Data over Voice Channels, Voice Encryption, Joint
Speech Coding, Formal Verification, Semantic Security.
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CHAPTER 1
Introduction

1.1 Problem outline

The mainstreaming of mobile networks opens new possibilities for personal communication. Ho-
wever, the rising numbers of reported privacy violations and cyber-espionage cases undermine
confidence in the communication infrastructure. Another issue is inadequate security of many
voice communication systems, such as GSM which encrypted voice traffic using the insecure A5/1
stream cipher with a 64-bit key [Biham and Dunkelman, 2000]. Low trust results in a growing need
for alternative methods of securing vocal communication.

This work addresses the issue of secure voice communications over untrusted voice channels.
The procedure for establishing a secure vocal link is illustrated in Figure 1.1. In the first step,
two users carrying dedicated devices initiate an insecure call using a preferred communication
technique, like cellular telephony, Voice over Internet Protocol, or fixed-line telephone circuits.
Then, the two devices securely acknowledge their cryptographic keys by sending binary messages
over the voice channel, the same way as ordinary voice. Once the cryptographic key is computed
and authenticated, the speakers can start a secure conversation. Each device encrypts speech in
real-time into an incomprehensible noise and sends the encrypted signal over the channel. Upon
reception, the paired device decrypts the signal and restores the initial voice.

(a) Key exchange and authentication with short codes displayed on the devices.

(b) Encrypted conversation.

Figure 1.1 – Establishing a secure vocal link over a voice channel.

The outlined communication scheme involved into sending the encrypted audio is more com-
plicated than exchanging encrypted bits over digital packet networks. Modern voice channels aim
at preserving speech intelligibility at an acceptable speech quality degradation. This goal is ac-
complished by applying perceptual speech processing, such as voice compression, voice activity
detection, and adaptive noise suppression. All these operations considerably modify the synthetic
signal, hindering secure communication.

1



2 CHAPTER 1 — Introduction

On the other hand, secure communication over voice channels is supposed to be more ver-
satile because the encrypted audio signal can be made compatible with arbitrary communication
infrastructure. Furthermore, the encrypted audio signal is more likely to pass through firewalls
without being blocked [Lee et al., 2017]. Finally, the system can protect against spying malware
installed on the portable device if speech encryption is done by an external unit [Krasnowski et al.,
2020]. The mentioned advantages suggest that the proposed setting could be especially useful for
diplomatic and military services, journalists, lawyers, and traders who require secure communica-
tions in an unreliable environment and without confidential communication infrastructure. Conse-
quently, the system should reflect high security requirements by elevating the level of secrecy,
privacy, and authentication.

1.2 Research rationale

Transforming speech into an encrypted signal is a multi-step process that consists of speech enco-
ding, enciphering, appending redundancy for error protection, and signal synthesis. The classical
and also the most straightforward approach is to treat each of these steps separately, as depicted
in Figure 1.2. However, this approach is not suitable in secure voice communications because the
information conveyed in speech is non-uniformly distributed in the time-frequency plane. Conse-
quently, the system ignores the fact that some speech parameters are more relevant in terms of
privacy and intelligibility, resulting in suboptimal bandwidth allocation and data protection. It is
especially true in communication over a very low-bitrate vocal channel with distortion.

Figure 1.2 – Separated processing chain in digital speech encryption.

Firstly, the error-protection block does not prioritize the most relevant voice parameters needed
to maintain the speech quality. In parallel, the speech encoder cannot be sensibly tuned to mitigate
typical transmission errors introduced by the voice channel.

Secondly, classical cryptographic algorithms are unsuitable for enciphering speech as they
usually require error-less data for decryption. In the discussed setting, however, transmission er-
rors are unavoidable. On the contrary, one may observe that perfect data decryption is not man-
datory, and small imperfections are likely to be perceptually irrelevant. Consequently, it would be
advantageous to design a cryptographic scheme aware of the channel constraints and the unequal
importance of vocal parameters.

The aforementioned interdependencies suggest that speech encoding, encryption, error-
correction, and signal synthesis must be considered jointly. As a result, robust real-time com-
munication over voice channels requires combining the processing blocks into a single unit, as
shown in Figure 1.3.

This thesis aims to develop, analyze, and validate secure and efficient schemes for real-time
speech encryption and transmission via real voice channels in the form of pseudo-voice in the
audio domain. This multi-domain study combines elements from the fields of audio signal pro-
cessing, cryptography, cybersecurity, and error-correcting codes, encouraging the joint approach
for speech encryption schemes with lossy encoding and resistant to the distortion introduced by
digital voice channels.
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In addition to developing algorithms for speech encryption, this study covers the relevant as-
pects of the whole voice communication system from an industrial perspective. Cryptographic key
management, key exchange protocols, and usage scenarios are important parts of this work.

Figure 1.3 – Joint source-cryptographic-channel coding of speech.

1.3 Origins of secure voice communications

The history of secure voice communications is marked by various inventions that progressively
shaped our modern understanding of secure communications. The first ‘secure’ speech scrambler
patented in 1881 alternated speech signal between multiple telephone circuits at a high rate [Ro-
gers, 1881]. The system did not offer high protection, and until the First World War was replaced
by analog frequency inverters making the speech signal incomprehensible for an ordinary listener
(Figure 1.4). Again, it turned out that trained operators could understand inverted speech, effec-
tively breaking the secrecy of communication [Kak, 1983]. In the third attempt, engineers added
analog band splitters for permuting speech subbands, as shown in Figure 1.5. The A-3 splitter
installed by AT&T in 1937 for radiotelephone service used five subbands with 5! · 25 = 3840
combinations of permutations and inversions. However, only 11 codes were considered suitable
for privacy, which was far too low to resist cryptanalysis [Kahn, 1996].

Figure 1.4 – Frequency inverter in which speech
is band limited.

Figure 1.5 – Bandsplitting, and band permuta-
tion with band inversions.

The progress in analog speech scrambling moved towards higher permutation complexity
and reached maturity by introducing sequentially updated time-frequency segment permutations
(TFSP) [Jayant et al., 1983]. In these systems, speech was scrambled by combined time and fre-
quency permutations using permutation matrices. Moreover, the matrices were frequently updated
according to a random sequence to improve robustness to cryptanalysis. Despite these efforts,
novel analog speech scramblers were consistently broken during the wartime period and later
[Goldburg et al., 1993, Kahn, 1996, Zhao et al., 2007, Ghasemzadeh et al., 2014].

Another family of analog speech scramblers altered speech with additive or multiplicative
masking noise that could be filtered out at the unscrambler (Figure 1.6) [Sugar, 1974,MacKinnon,
1980]. First systems superimposed masking tones or white noise [Sivian, 1928], whereas more
advanced systems used chaotic maps [Kocarev et al., 1992]. Unfortunately, transmission errors
and imperfect filters significantly degraded the speech quality at the receiving end. In consequence,
designers faced a negative tradeoff between speech quality and secrecy.
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The limitations of analog speech scrambling encouraged engineers to experiment with digital
speech encryption. The inspiration was the famous Vernam cipher patented in 1919 [Vernam, 1919,
Vernam, 1926], the electronic realization of an unbreakable ‘one-time pad’ used during the First
World War for telegram communication. The initial idea was to encipher a digital representation
of the speech samples with a random digital keystream (Figure 1.7) [MacKinnon, 1980]. While
highly secure, the technique required wide bandwidth (12-18 kbps), error-less digital channels,
which were prohibitively expensive at that time. The technical challenge remained unresolved
until the late 30s when first voice coders (vocoders) were proposed [Dudley, 1939]. Vocoders
enabled speech compression and reduction of encrypted data to be send.

Figure 1.6 – Speech masking. Figure 1.7 – Digital speech enciphering.

Probably the first secret telephony system using a vocoder was SIGSALY 1 (‘X-System’),
constructed in 1943 for secure communication during the Second World War [Bennett, 1983].
Figure 1.8 illustrates the block diagram of the transmitting part. The input speech was filtered
by ten band splitters distributed nearly uniformly over the 150-3000 Hz range. The amplitudes of
filtered streams were sampled by a six-level non-uniform quantizer, resulting ten trains of numbers
between 0 and 5. Parallelly, a separate unit performed a two-step pitch prediction. The output was
two numbers between 0 and 5 representing the coarse pitch value and the pitch refinement, or a
single voicing bit.

The twelve trains of encoded values were independently enciphered with twelve trains of ran-
dom six-valued numbers by a modulo-6 addition. The random numbers were obtained by conti-
nuously sampling white noise generated by a hot gas tube, based on the one-time-pad principle.
The result of enciphering were twelve trains of randomly-looking numbers.

The last step of speech encryption involved signal synthesis. Each of the twelve trains had an
assigned subchannel in the telephone band. Data transmission was done by modulating twelve fre-
quency carriers, each carrier occupying one subchannel. The encoding and enciphering operations
were repeated every 20 milliseconds, resulting in the 3.6 kbps transmission bitrate.

Figure 1.8 – Block diagram of a SIGSALY transmitter.

1. https://www.nsa.gov/about/cryptologic-heritage/historical-figures-
publications/publications/wwii/sigsaly-story/

https://www.nsa.gov/about/cryptologic-heritage/historical-figures-publications/publications/wwii/sigsaly-story/
https://www.nsa.gov/about/cryptologic-heritage/historical-figures-publications/publications/wwii/sigsaly-story/
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A successful deployment of SIGSALY, sometimes viewed as one of the most outstanding
technical achievement, marked the beginning of the vocoder era in secure voice communications.
Over the years, as more data bandwidth became available, the quality of speech synthesis was
improved, and the price of computing units went down, vocoder-based speech communication
became the predominant technique in the military and civilian applications. Around 1972, there
were first attempts to replace secure voice communication over fading telephone lines with packet
networks [Forgie, 1975], paving the way to modern secure VoIP communication.

1.4 Contributions

1.4.1 Data over Voice (DoV) technique

In Chapter 3, we propose a novel technique for data transmission over digital voice channels
with Linear Predictive Coding (LPC), such as cellular networks and VoIP. The technique relies
on codebooks of short waveforms with 7-10 phase-modulated harmonics over the 0 to 4 kHz
audio band. The solution’s novelty comes from the simplified codebook building process, which
uses short quaternary error correction codes to determine appropriate phases of the harmonics.
Moreover, the structure of the codebook of symbols enables many computational optimizations at
the receiving side and partial compensation of channel distortion. The method is more versatile
than other data transmission techniques over digital voice channels, often trained to a specific
channel model. The possibility of variable transmission rate up to 6.4 kbps gives control over the
robustness against channel distortion.

The DoV technique has been successfully validated in experiments with mobile phones and
real-world voice channels (3G networks, WhatsApp, Skype, FaceTime, Signal Messenger). We
achieved robust data transfer up to 2.4 kbps over 3G networks and 6.4 kbps over VoIP. The high
throughput and the robustness enabled transmission of encrypted speech in a setting simulating
real-time communication. As a result, the proposed method can be used in cryptographic key
exchange and secure voice communications over voice channels.

The work has been presented in the article ‘Introducing a Novel Data over Voice Technique for
Secure Voice Communication’ and submitted to the journal of Wireless Personal Communications,
Springer.

1.4.2 Distortion-tolerant encryption of vectors on N-spheres

In Chapter 4, we describe a new method of enciphering unit vectors on a hypersphere that
is robust against transmission error. The technique exploits spherical group codes and rotations
from a commutative group of orthogonal matrices introduced by Slepian [Slepian, 1968] in the
new context of securing data. The scrambled data are indistinguishable from uniformly distributed
noise in the presence of an eavesdropper when the matrices are selected according to a secure
pseudo-random sequence with fresh secret seed.

The presented encryption scheme decrypts data approximately despite channel distortion. It
makes the scheme suitable for protecting voice or images in real-time applications that priori-
tize robustness over representation’s fidelity. To describe the scheme’s ability to decrypt mildly
distorted ciphertexts, we defined a new notion of distortion-tolerant encryption.
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The enciphering technique is an essential building block in the experimental speech encryption
scheme described later in Chapter 5. The scheme is used to securely scramble multi-dimensional
spectral envelopes, which are responsible for speech timbre perception.

1.4.3 Distortion-tolerant speech encryption

In Chapter 5, we present a novel distortion-tolerant speech encryption scheme for secure voice
communications over voice channels that combines the robustness of analog speech scrambling
and a higher security level offered by digital ciphers. The system scrambles vocal parameters of
a speech signal (loudness, pitch, timbre) using random translations and the previously mentioned
random rotations on a hypersphere of parameters. In the next step, randomized parameters are
encoded to a pseudo-speech signal adapted to transmission over digital voice channels equipped
with voice activity detection.

The use of translations and rotations in enciphering makes the speech decryption algorithm
tolerant against moderate channel distortion. Upon reception of some pseudo-speech signal, the
receiver restores distorted copies of the initial vocal parameters. Despite some deciphering errors,
an integrated neural-based vocoder based on the LPCNet architecture [Valin and Skoglund, 2019]
reconstructs an intelligible speech.

The experimental implementation of this speech encryption scheme has been tested by simu-
lations and sending an encrypted signal over FaceTime between two iPhones 6 connected to the
same WiFi network. Moreover, speech excerpts restored from encrypted signals were evaluated
by a speech quality assessment on a group of about 40 participants. The experiments demonstra-
ted that the proposed scheme produces intelligible speech with a gracefully progressive quality
degradation depending on the channel distortion. Finally, the preliminary computational analysis
suggested that the presented setting may operate on high-end portable devices in nearly real-time.

1.4.4 Authenticated Key Exchange over voice channels

In Chapter 6, we designed a two-party authenticated key exchange (AKE) protocol for secure
voice communication over fading voice channels. The protocol does not require any reliable data-
driven side-channel nor a remote trusted party like a Certificate Authority (CA). The protocol
is based on the Ephemeral Elliptic Curve Diffie-Hellman key exchange and provides a flexible
double authentication mechanism with cryptographic signatures, and Short Authentication Strings
(SAS) pronounced aloud by the users. Considerable protocol simplifications lead to robustness
against signal fading and message dropouts.

The protocol’s security properties were successfully verified in a symbolic model using Ta-
marin Prover [Meier et al., 2013], a cryptographic protocol verification tool. Formal symbolic
verification can be considered as the first important step in evaluating the protocol security. Pa-
rallelly, the work emphasizes some practical aspects of the cryptographic key exchange such as
user-friendliness, easiness of implementing, and resilience against adversarial attacks.

The protocol and the symbolic verification in Tamarin Prover were published in ‘Introducing
a Verified Authenticated Key Exchange Protocol over Voice Channels for Secure Voice Commu-
nication’ at the 6th International Conference on Information Security and Privacy [Krasnowski
et al., 2020].
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1.5 Organization

Figure 1.9 – Flow diagram of the manuscript.

Chapter 2 reviews the principles of speech parametrization, speech synthesis, and digital
voice communication, which help to understand some challenges related to secure communi-
cations over voice channels. The investigation revealed that many real voice channels (cellular
networks, VoIP) rely on Linear Predictive Coding (LPC), inspiring the robust DoV technique pre-
sented in Chapter 3. Furthermore, the analysis of various speech coding techniques concluded
that achieving error-less data transmission over general voice channels is very unlikely. This result
motivated the work on distortion-tolerant encryption techniques in Chapter 4 and Chapter 5. Fi-
nally, the characterization of cellular networks and VoIP highlighted their susceptibility to signal
dropouts, which encouraged designing a robust AKE protocol detailed in Chapter 6.

Chapter 3 describes the DoV technique based on codebooks of harmonic waveforms. The
technique description is preceded by an examination of the typical signal distortion introduced by
a selection of LPC coders. This chapter details an efficient codebook design method using qua-
ternary codes and derives a demodulation rule with distortion compensation. Transmission perfor-
mance over cellular networks and VoIP is presented and discussed. Finally, the chapter outlines an
experimental secure voice system using DoV and proposes a technique countering voice activity
detection by repetitive silence insertion.

Chapter 4 details the distortion-tolerant encryption scheme for scrambling spherical data
using commutative spherical group codes. The chapter starts by recalling the fundamental theory
of lattices, spherical codes, and secure pseudo-random generators. The chapter then introduces the
notion of distortion-tolerant encryption that describes the system’s capability to decipher distorted
ciphertexts approximately.
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The encryption scheme using spherical codes is thoroughly detailed. The chapter explains the
computational indistinguishability of encryptions in the presence of an eavesdropper when the
source of randomness is a secure pseudo-random number generator (PRNG). For illustration, the
chapter finishes with a toy example of distortion-tolerant color scrambling of an RGB image.

Chapter 5 introduces the distortion-tolerant speech encryption scheme. The chapter details
all processing steps, including speech encoding, enciphering, pseudo-speech synthesis, and final
speech reconstruction using so-called LPCNet voice synthesizer based on Machine Learning. Fur-
ther, the chapter investigates the security, operational, and computational aspects of the system.
Finally, it presents the results of some simulations and a speech quality assessment.

Chapter 6 presents the authenticated key exchange protocol over fading voice channels. The
chapter enlists the security requirements posed by secure voice communication systems and dis-
cusses some typical use cases. Moreover, the chapter briefly describes a symbolic protocol verifi-
cation in Tamarin Prover from the user perspective. The protocol properties and verification results
are thoroughly discussed.

Chapter 7 concludes the manuscript and gives prospects for future work.

1.6 Highlights

My PhD started in December 2017 as a DGA 2 CIFRE 3-Defense fellowship at the cyber-
security startup BlackBoxSécu in Sophia Antipolis, France, and in cooperation with I3S 4-CNRS 5

and the Université Côte d’Azur, France. The project was co-funded by BlackBoxSécu and the
DGA grant No 01D17022178.

During my PhD at BlackBoxSécu, I helped with developing a stand-alone device for speech
encryption that could be connected to a mobile phone in tandem, and would enable a secure com-
munication over voice channels. This application-oriented study resulted in a new Data over Voice
technique and an optimized Authenticated Key Exchange protocol over voice channels, both des-
cribed in this manuscript.

In December 2019, I was a visiting student at the group of Prof. Cheon Jung-hee at Seoul
National University, South Korea, where I had a great pleasure to observe the cutting-edge research
on homomorphic encryption, and to exchange valuable ideas.

In February 2020 my DGA CIFRE-Defense grant was converted to a fully academic PhD at
I3S and the Université Côte d’Azur due to some financial difficulties faced by BlackBoxSécu.
The studies were funded by AID 6 from the grant No SED0456JE75. Starting from that moment, I
moved my attention towards more theoretical aspects of my project, which was a new distortion-
tolerant speech encryption scheme using spherical commutative group codes.

2. Direction Générale de l’Armement
3. Conventions Industrielles de Formation par la Recherche
4. https://www.i3s.unice.fr/
5. http://www.cnrs.fr/
6. Agence de l’Innovation de Défense
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CHAPTER 2
Speech processing and
voice communications

Secure voice communication over voice channels encompasses three technical problems
associated with speech processing: ensuring conversation secrecy, maintaining high
speech quality at the reception side, and enabling robust and low-latency signal trans-
mission via vocal channels. These seemingly different topics should be considered jointly
due to severe constraints posed by voice channels, which operate differently than tradi-
tional data-driven communication channels.
This chapter provides some essential background for understanding challenges related
to secure voice communication over voice channels. The chapter reviews the principles
of speech parametrization, speech synthesis, and digital voice communication. Further-
more, it gives a general overview of popular voice coding techniques, briefly characte-
rizes vocal channels, and points out some relevant state-of-the-art solutions. The chapter
concludes with some guiding rules for designing a robust communication system over
voice channels.
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2.1 Motivation

The secure voice communication setting considered in this study involves sending a synthetic
signal with data using some voice-oriented application. This seemingly simple problem, however,
turns out to be rather challenging. For example, Figure 2.1 illustrates a received and recorded
synthetic signal sent between two mobile phones through WhatsApp. The signal consisted of eight
phase-modulated harmonics in the 0.4-3.2 kHz range with short repeated synchronization tones at
3.6 kHz. Harmonics were modulated using traditional Phase-Shift-Keying (PSK) modulation, and
carried some binary information. After a few seconds of transmission, WhatsApp suppressed these
modulated harmonics and significantly amplified the synchronization tones instead. The binary
data encoded into harmonics were irreversibly lost.

This experiment revealed that real-world digital voice channels cannot be considered as classi-
cal communication channels. Voice channels aim at preserving speech intelligibility, which is quite
a different goal than of data-driven channels. Consequently, voice-oriented applications perform
complex processing that may completely disarrange the fine time-structure of the input signal.

Voice channels are the primary limiting factor for a secure communication system. The
pseudo-speech signal must conform with the speech model implemented in a particular voice
channel, otherwise risking signal distortion or suppression. Moreover, some channel characteris-
tics (e.g., audio bandwidth, signal compression ratio, latency) limit the available data throughput
for sending encrypted speech. Consequently, robust communication is possible only if the avai-
lable channel throughput (i.e., determined by compression bitrate) is sufficiently high.
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Figure 2.1 – Received and recorded signal sent over the WhatsApp application presented in
the time domain (left) and the time-frequency domain (right). The signal consisted of eight
phase-modulated harmonics in the 0.4-3.2 kHz range and short repeated synchronization tones
at 3.6 kHz. After a few seconds of the transmission, WhatsApp suppressed the phase-modulated
part of the signal and amplified synchronization tones.

This chapter reviews the principles of speech coding and communication and gives some es-
sential background needed to answer the three questions: how modern voice channels process and
transmit the input signal, how to produce pseudo-speech that conforms with digital voice channels,
and what speech data to protect. The chapter outlines speech production and perception mecha-
nisms that underlie speech parameterization, speech compression, and speech synthesis. Further-
more, it focuses on the core elements and parameters of 2G/3G cellular networks and Voice over
Internet Protocol (VoIP), which are anticipated to cover most usage scenarios for the secure voice
system.
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This chapter is organized as follows. Section 2.2 recalls the speech chain concept, helpful in
understanding speech processing paradigms. Section 2.3 describes the source-filter speech pro-
duction model and the speech encoding method based on Linear Predictive Coding. Section 2.4
focuses on the auditory system and perceptual speech parametrization. Section 2.5 overviews four
prominent voice coding families: waveform coders, LPC coders, perceptual coders, and parametric
coders, which are widely adopted in digital voice communications and can be used in speech en-
cryption with lossy encoding. Moreover, the section enlists possible speech synthesis methods, in-
cluding autoregressive-moving-average (source-filter) synthesis, sinusoidal speech synthesis, and
synthesis using trained neural networks. Finally, Section 2.6 briefly characterizes voice channels
in cellular networks and VoIP with an emphasis on operational constraints (delay, bandwidth, re-
liability) and algorithms such as Voice Activity Detection (VAD), Adaptive Gain Control (AGC),
and Noise Suppression (NS). Section 2.7 summarizes the chapter.

2.2 The speech chain

The speech signal is an acoustic, analog waveform that conveys some encoded message and
is used in natural human communication [Benesty et al., 2008, Chap. 1, Rabiner and Schafer,
2011, Chap. 1]. Apart from the linguistic content, speech provides much paralinguistic informa-
tion such as the speaker’s identity [Furui, 1996, Campbell, 1997], age and gender [Ptacek and
Sander, 1966, Childers and Wu, 1991, Metze et al., 2007, Li et al., 2013], emotions [Nwe et al.,
2003, Vogt and André, 2006], and the linguistic origin [Hanani et al., 2013, Kolly and Dellwo,
2014]. From a security standpoint, all this information is considered sensitive and must be protec-
ted by the speech encryption system. If protection of some paralinguistic information becomes too
burdensome for the system (for example, due to insufficient bandwidth), this information should
be suppressed rather than leaked.

The linguistic and paralinguistic information conveyed in the speech signal may be seen as a
multi-step speech production process, shown in Figure 2.2. Speech production involves an abstract
message formulation, language-level representation, and physiological articulation. These enco-
ding steps add natural redundancy that robustifies communication in a noisy environment. The
speech signal captured at the ear is decoded in the reversed order. Firstly, the auditory system per-
forms a spectral analysis of the received speech and extracts the spectral features. In the next step,
the auditory nerves forward the spectral information to the brain, which recognizes particular pho-
nemes, and forms words and sentences. Finally, the brain translates the linguistic representation
into the initial message [Rabiner and Schafer, 2011, Chap. 1]. These combined speech production
and perception processes are called the speech chain [Denes and Pinson, 1993].

The speech chain intuitively describes the information flow in vocal communication. The ini-
tial message formulation, described as a product of the syllable-level information density (in bits/
syllable) and the average utterance speed (in syllables/second), is done approximately at the rate
of 39 bps [Coupé et al., 2019]. This estimated value is believed to reflect the neurocognitive capa-
bilities of the human brain and be independent of the speaker’s language. Another approach is to
represent the message as a sequence of phonemes. For example, the English phonological system
consists of 42 phonemes [Cohen, 1971] where each phoneme could be encoded with 6 bits. As-
suming an average utterance speed of 10 phonemes/seconds, we obtain 60 bps of the information
rate [Ramasubramanian and Doddala, 2015]. Appending the minimum prosodic information (e.g.,
duration, intensity, intonation) also adds some redundancy [Rabiner and Schafer, 2011, Chap. 1].
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Figure 2.2 – Diagram of speech production and perception.

Speech articulation transforms the discrete message into the analog, continuous domain. The
slowly moving articulatory system needs about 100 ms to significantly change the produced soun-
d’s characteristic [Gay et al., 1974, Tasko and Westbury, 2004, Flanagan, 1972]. The result of
speech articulation is a speech signal that could be represented as a sequence of speech samples.
Since the audible spectrum ranges between 20 Hz to 20 kHz (the upper bound drops somewhat
in adulthood) [Purves et al., 2018, Chap. 13], one may assume the ‘CD-quality’ sampling rate of
44.1 kHz and 16-bit quantization. The data rate of such sampled signal goes up to 705 kbps.

Interestingly, there is growing evidence for some physical correlation between the production
and perceptual systems [Miller et al., 1986, Wilson et al., 2004, Ackermann et al., 2007]. Thus, it
is believed that the information rates associated with respective speech production and perception
steps are comparable to each other [Rabiner and Schafer, 2011, Chap. 1].

The last important element of the speech chain is the transmission channel. In natural conver-
sation, the channel is a noisy acoustic connection between the speaker and the listener. In long-
distance communication, an acoustic speech signal is transduced to electric intensity and sent in
the analog or the digital domain over the network.

Modern digital voice channels encode and compress speech signals to reduce the data to send.
Again, the speech chain provides a good outline of strategies for extracting relevant information
from the speech signal. For instance, increasingly popular speech-to-text applications mimic the
whole speech perception process, firstly converting the speech signal into a sequence of features,
and then mapping these features into phonemes, syllables, and finally into full words [Huang et al.,
2001, Chap. 9, Gold et al., 2011, Chap. 22-24, Rabiner and Schafer, 2011, Chap. 14]. However,
building highly abstract representations of the speech signal requires some computational effort
and introduces a significant processing delay. Thus, coding algorithms intended for real-time voice
communications are mostly inspired by physiological voice production and perception mecha-
nisms. The same processing constraint applies to securing speech and to producing an encrypted
pseudo-speech signal in real-time.
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2.3 Source-filter model and Linear Predictive Coding

One of the most efficient techniques used in real-time voice compression (and hence popular in vo-
cal communications) takes inspiration from the mechanism of speech production by phonatory and
articulatory systems, illustrated in Figure 2.3. The phonatory system, consisting of lungs, a larynx,
and vocal cords, is responsible for producing excitation sound. The role of articulatory organs - a
lower jaw, a velum, a tongue, and lips - is to change the shape of a vocal tract, which begins at the
opening of the glottis, and then continues through a pharynx, oral and nasal cavities, and finishes
at lips and nostrils [Benesty et al., 2008, Chap. 2, Rabiner and Schafer, 2011, Chap. 3, Bäckström,
2017].

Figure 2.3 – Phonatory and articulatory systems. Krasnowski.

According to the source-filter model of speech [Müller, 1840,Fant, 1960,Kelly and Lochbaum,
1962], voice production starts with the air pushed out by the lungs and flowing through the vocal
cords located in the larynx. When the vocal cords are tense, the air pressure causes the organ to
open and close in a quasi-periodic manner. As a result, the vibrating vocal cords generate pulse-
shaped buzzing sound. The cords’ tension and size, combined with the airflow speed, control
the sound frequency. Then, the buzzing excitation propagates through the vocal tract, where it is
spectrally and temporarily shaped. A continuous movement of the tongue, the teeth, and the lips
change the tract’s transfer function, resulting in different sounds emitted by the speaker. The size
and the shape of the tract may significantly differ between each person, resulting in the unique
prosodic voice characteristics that enable speaker identification. Table 2.1 lists ranges of the sound
frequency produced in glottis for male, female and child speakers [Rabiner and Schafer, 2011,
Chap. 3], and Table 2.2 describes the average size of the vocal tract [Fitch and Giedd, 1999].

Table 2.1 – The range of frequencies (pitch periods) produced in glottis by male, female and child
speakers [Rabiner and Schafer, 2011, Chap. 3].

Minimum Average Maximum
Male 80 Hz (12.5 ms) 125 Hz (8.0 ms) 200 Hz (5.0 ms)
Female 149 Hz (6.7 ms) 227 Hz (4.4 ms) 345 Hz (2.9 ms)
Child 200 Hz (5.0 ms) 303 Hz (3.3 ms) 500 Hz (2.0 ms)
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Table 2.2 – The average ‘curved’ lengths (in millimeters) of lip, tongue blade, tongue dorsum,
velum and pharynx in male, female and child speakers [Fitch and Giedd, 1999].

Lip Blade Dorsum Velum Pharynx Total
Male 14.5 25.5 26.8 34.0 60.4 161.2
Female 12.8 24.8 24.6 37.2 46.9 146.4
Child (5-10) 13.5 20.0 22.6 27.5 35.7 119.5

The sound characteristics produced by the vocal cords and the moving vocal tract can be well
observed on a spectrogram (Figure 2.4). The voiced parts of the signal have a clear harmonic
structure, with the harmonics located at the multiples of the fundamental frequency of excitation.
On the contrary, the unvoiced signal resembles noise of intensity concentrating at higher frequen-
cies. The darker lines in the spectrogram correspond to formants, the tract’s resonant frequencies.
When the articulatory organs are moving, formants are continuously changing their position and
amplitude. In practice, variation and relative position of formants are crucial in phonemic classifi-
cation [Lindblom and Studdert-Kennedy, 1967, Syrdal and Gopal, 1986].

Figure 2.4 – Spectrogram of the recorded speech signal.

In speech coding, the outlined speech production system is often approximated by a simplified,
discrete-time model illustrated in Figure 2.5. According to the model, speech production consists
of two distinct elements: a discrete-time excitation (source signal) generator and a filtering transfer
function. The latter element represents the combined effect of the glottal pulse shaping, the vocal
tract, and radiation at the lips [Rabiner and Schafer, 2011, Chap. 3].

An excitation signal can take two different forms, depending on whether a generated sound
is classified as voiced or unvoiced. When the sound is voiced, the excitation generator simulates
vibrating vocal cords and produces an impulse train (Dirac comb) with a specified period. In
another case, the generator outputs white noise. The resulted excitation signal is amplified by
some gain G.

Derivation of the correct tract transfer function is challenging because it requires the exact
knowledge of the transient tract shape and the soft tissue covering. Instead, the vocal tract is
approximated by N concatenated lossless tubes, as illustrated in Figure 2.6. Then, the transfer
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Figure 2.5 – Simplified discrete-time, source-filter model for speech synthesis.

function V(z) representing the vocal tract (without the glottal shaping and the lips radiation) takes
the form of the N -pole filter with coefficients a1, ..., aN :

V(z) = 1
1−

∑N
k=1 akz−k

. (2.1)

The function V(z) is experimentally extended to an all-pole transfer function H(z) with 12-16
coefficients to include effects introduced by the glottal shaping, the nasal cavity, and the lips ra-
diation:

H(z) = 1
1−

∑p
k=1 akz−k

. (2.2)

In real-world applications, the transfer function H(z) is usually not known a priori. It is pos-
sible to estimate H(z) and the excitation signal from the sampled speech signal s[n] in the process
called linear prediction analysis. The big success of linear prediction popularized the term ‘linear
predictive coding’ (LPC) when referring to all speech processing techniques based on the linear
source-filter model shown in Figure 2.5 [Rabiner and Schafer, 2011, Chap. 9].

Figure 2.6 – Lossless acoustic tube model of a vocal tract. Krasnowski.

Assuming that the recorded speech follows the source-filter model shown in Figure 2.5 with
the excitation u[n] and the all-pole filter H(z) described by coefficients a1, ..., ap, discrete-time
speech samples s[n] can be expressed using the difference equation:

s[n] =
p∑

k=1
aks[n− k] + Gu[n]. (2.3)

Thus, H(z) acts like a linear prediction filter. Since the true values of the coefficients ak and the
excitation samples Gu[n] are not known beforehand, the prediction algorithm searches coefficients
αk such that the prediction error e[n] (the residual) has the minimum energy

∑
n e2[n]:
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s[n] =
p∑

k=1
αks[n− k] + e[n]. (2.4)

The resulting coefficients αk and the residual e[n] are assumed to be the true coefficients ak and
the excitation Gu[n], respectively.

In practical realizations, the algorithm processes only short portions of the speech signal, as-
sumed to be stationary [Elliott and Theunissen, 2009]. For the speech interval of length L and
starting at ñ, samples sñ[ℓ] used in the prediction analysis have the following form:

sñ[ℓ] = s[ℓ + ñ]w[ℓ], ℓ = 0, ..., L− 1, (2.5)

where w[ℓ] is the Hamming window centered at ⌊L/2⌋ and equal to 0 outside 0, ..., L−1. In such
a case, the prediction algorithm aims at minimizing the residual energy over the interval:

Eñ =
L−1+p∑

ℓ=0

(
sñ[ℓ]−

p∑
k=1

αksñ[ℓ− k]
)2

. (2.6)

The minimization of Eñ has a unique solution. Taking the partial derivatives ∂Eñ/∂αi for i =
1, ..., p, and equating them to 0 gives p linear equations with p unknowns:

L−1+p∑
ℓ=0

sñ[ℓ− i]sñ[ℓ] =
p∑

k=1
αk

L−1+p∑
ℓ=0

sñ[ℓ− i]sñ[ℓ− k], 1 ≤ i ≤ p. (2.7)

Equations 2.7 can be efficiently solved by the Levinson-Durbin algorithm [Makhoul, 1975].
With the H(z) finally obtained, the signal residual e[n] is further processed to compute the

gain G and estimate the harmonicity ratio (voicing). When the signal is sufficiently harmonic, the
speech encoder estimates the pitch period. Otherwise, the excitation is replaced with white noise.

The two-level excitation model is sufficient for typical vocal sounds. For instance, Figures 2.7
and 2.8 present residual signals obtained from LPC analysis of the real vowel /e/ and the fricative
/s/ recordings. It can be noticed that the residual of the voiced vowel is similar to a pulse train
and the residual of the unvoiced fricative resembles noise.
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Figure 2.7 – LPC analysis of vowel /e/: (left) time-domain waveform, (right) filtering residual
obtained with the 12th order LPC filter.
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Figure 2.8 – LPC analysis of fricative /s/: (left) time-domain waveform, (right) filtering residual
obtained with the 12th order LPC filter.

Figure 2.9 displays the LPC filter frequency response obtained from a linear predictive analysis
of vowel /e/. The filter phase response is highly nonlinear, whereas magnitude has distinguishable
resonances corresponding to the vowel’s formants.

Despite its simplicity, linear predictive coding achieves satisfactory results in representing
speech signals at medium bitrates (4-16 kbps). In consequence, LPC became a popular technique
in voice communication systems, including cellular networks and VoIP. For this reason, it seems
natural that the encrypted pseudo-speech used in secure communication must fit into the source-
filter speech model and be robust against LPC processing. For example, linear filtering is likely
to change the complex spectral profile of the transmitted signal. The crucial question is how a
particular voice channel corrupts unvoiced residuals. When the coder replaces unvoiced sounds
with synthetic white noise, information encoded into an encrypted signal can be irreversibly lost.

Fortunately, a majority of voice coders adopted in digital communications do not replace noisy
residuals entirely. Instead, coders often apply sophisticated encoding techniques in order to re-
present the residual faithfully. In practice, the encoding method of the residual determines the
distortion characteristics introduced by the voice channel.

A more detailed characterization of LPC-based voice channels and some strategies for produ-
cing conforming pseudo-speech signal is covered in Chapter 3.
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Figure 2.9 – Magnitude (blue line, left y-axis) and phase (red line, right y-axis) response of the
LPC filter of order 12, obtained by the LPC analysis of vowel /e/.
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2.4 Psychoacoustics and perceptual speech coding

An alternative method to encode speech relies on the psychoacoustic properties of the human
auditory system. Unlike source-filter modeling, which simulates the voice production, perceptual
speech coding aims at preserving signal information relevant for the listener. This approach is the
one underlying general audio coding as done in MPEG-2 Audio Layer III (MP3) [ISO/IEC, 1998],
and Advanced Audio Coding (AAC) [ISO/IEC, 2006].

Speech perception is determined primarily by the physiological processing of sound captured
by the pinna. The processing starts at the eardrum, which transforms acoustic pressure waves
into mechanical vibrations. Next, the vibrations are transduced by the adjoint auditory ossicles
(malleus, incus, and stapes) and transmitted through the oval window to the cochlea. Inside this
snail-shaped organ filled with fluid, the mechanical vibrations produce multiple resonances at
different longitudinal locations corresponding to specific frequency components (Figure 2.10).
Finally, the frequency-sensitive hair-cell sensors distributed along the basilar membrane detect the
resonances and trigger the generation of electric pulses transmitted to the brain by the auditory
nerve.

Figure 2.10 – Simplified model of the cochlea and the cochlea longitudinal frequency distribution.

The basilar membrane may be seen like a bank of non-linear filters transforming the time-
domain signal into its short-time spectral representation [Rabiner and Schafer, 2011, Chap. 4, Gold
et al., 2011, Chap. 14, Fastl and Zwicker, 2006]. The frequency response of the membrane is often
compared to a set of intensity-sensitive, overlapping bands. The number and widths of the filters
have been estimated experimentally [Kiang and Moxon, 1974], leading to the idealized concept
of 24 critical bands [Fastl and Zwicker, 2006] that covers the audible band in average adults. Ac-
cording to the model, the bands are approximately constant below 500 Hz and are logarithmically
widening at higher frequencies. The non-linear band distribution is usually represented in the Bark
scale, which numbers center frequencies of bands by integers from 1 to 24 (Table 2.3). The Bark
scale approximates the octave-based perception of notes [Kallman, 1982].

The auditory filter-bank model is extensively used in perceptual speech coding for represen-
ting the short-time speech spectrum. To improve encoding efficiency, speech perception models
consider non-linear sound perception and temporal/frequency masking [Lyon, 1982, Kubin and
Kleijn, 1999].
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Table 2.3 – Bark scale critical bands [Fastl and Zwicker, 2006].
Bark Center Freq. (Hz) Bandwidth (Hz) Bark Center Freq. (Hz) Bandwidth (Hz)

1 50 100 13 1850 280
2 150 100 14 2150 320
3 250 100 15 2500 380
4 350 100 16 2900 450
5 450 110 17 3400 550
6 570 120 18 4000 700
7 700 140 19 4800 900
8 840 150 20 5800 1100
9 1000 160 21 7000 1300
10 1170 190 22 8500 1800
11 1370 210 23 10500 2500
12 1600 240 24 13500 3500

Perceptual speech coding proved to be very useful in speech recognition [Huang et al.,
2001, Chap. 9, Rabiner and Schafer, 2011, Chap. 14], voice transformation [Benesty et al., 2008,
Chap. 24] and speech synthesis [Kondoz, 2004,Milner and Shao, 2006,Juvela et al., 2018]. Howe-
ver, speech coders relying solely on auditory models provide lower voice quality than source-filter
coders at the same compression rate. It is because source-filter coding makes stronger assumptions
about the encoded speech signal, enabling sparser representation [Bäckström, 2017, Benesty et al.,
2008, Chap. 18].

The physiological properties of the auditory system enable the listener to distinguish three
components of a vocal (or a musical) sound: loudness, pitch, and timbre [Huang et al., 2001,
Chap. 2]. Although sound perception varies among listeners, a considerable effort has been under-
taken to relate sound perception with objective signal properties [Stevens, 1956, Von Békésy and
Wever, 1960,Goldstein, 1973]. The studies revealed that these perceptual qualities can be roughly
related to three signal characteristics: signal intensity, fundamental frequency, and spectral en-
velope, as listed in Table 2.4. Moreover, it can be assumed that these components are roughly
independent of each other, i.e., a modification of one physical parameter changes only the corres-
ponding perceptual component.

Table 2.4 – Simplified relation between the perceptual and the physical qualities of speech signal.
Perceptual Quality Physical Quality

loudness signal intensity
pitch fundamental frequency

timbre spectral envelope

Speech loudness is perceptually related to sound intensity, which is defined as the ratio bet-
ween the average flow of the energy through a unit area I and the accepted referential threshold of
hearing I0 = 10−12 W/m2. Sound intensity is usually represented in the logarithmic scale:

IL = 10 log10

(
I

I0

)
dB. (2.8)
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Sound intensity of a natural speech varies usually between 20 dB - 80 dB [Rabiner and Schafer,
2011, Chap. 4].

The sensitivity of the auditory system to sound intensity varies in frequency. Figure 2.11 pre-
sents the equal-loudness curves [Fletcher and Munson, 1933], indicating the sound intensity levels
perceived by an average listener as equally loud. The highest sensitivity to sound intensity is lo-
cated between 500 Hz and 5 kHz, and largely overlaps with the speech spectrum between 150 Hz
and 7 kHz [Rabiner and Schafer, 2011, Chap. 4]. Subband speech and audio coders often exploit
the nonlinear sound perception by optimizing the quantization of frequency bands [Benesty et al.,
2008, Chap. 18].

Pitch, expressed in mel units, is a perceptual quantity describing the frequency of a tone. The
nonlinear relation between the pitch and the true frequency is fitted by the following formula:

pitch = 1127 log10

(
1 + f

700

)
mel, (2.9)

where f is the tone frequency in Hz [Stevens et al., 1937, Rabiner and Schafer, 2011, Chap. 4].
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Figure 2.11 – Equal-loudness curves as a func-
tion of frequency and for different values of the
sound intensity [ISO, 2003]
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Figure 2.12 – Subjective pitch in mels as a func-
tion of the actual frequency of a pure tone.

As suggested by Figure 2.12, the listener’s ability to discriminate two similar tones decreases
when the frequency of the lower tone goes up. This observation agrees with the critical band theory
because two close tones are more likely to fall into the same spectral band at higher frequencies
than at lower frequencies [Fastl and Zwicker, 2006].

The third perceptual component, timbre (the color of sound), is sometimes described as a
quality distinctive from pitch and loudness [ANSI, 1994]. The research on describing timbre per-
ception is still ongoing (for a relevant discussion, see [Sethares, 2004, Aucouturier and Bigand,
2012, Siedenburg et al., 2016]). Nevertheless, it is generally agreed that timbre is a multidimen-
sional property describing spectro-temporal characteristic of a sound. In the case of voice, timbre
is usually associated with formants or spectral envelope [Huang et al., 2001, Chap. 2]. Such an
interpretation links timbre with the vocal tract’s shape, contrarily to pitch and loudness related to
excitation.

Compared to pitch and loudness, an efficient parametrization of timbre appears troublesome.
There are many propositions for approximate spectral envelope representations, such as Per-
ceptual Linear Prediction (PLP) model or LPC filter frequency response [Rabiner and Schafer,
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2011, Chap. 8]. One efficient representation of timbre in the speech recognition domain are Mel-
Frequency Cepstral Coefficients (MFCC) [Davis and Mermelstein, 1980]. MFCC are defined as
the discrete-cosine transform (DCT) of the logarithm of the mel-spectrum of a speech frame:

MFCC[n] = 1
R

R∑
r=1

log10(MF[r]) cos
[2π

R

(
r + 1

2

)
n

]
,

where MF is the mel-spectrum of the speech frame computed based upon a filter bank of R ≥ n
weighting functions (Figure 2.13) that approximate the critical band spacing:

MF[r] =
∑Ur

k=Lr
|Wr[k]X[k]|2∑Ur

k=Lr
|Wr[k]|2

, r = 1, 2, ..., R,

where X is the Discrete Fourier Transform (DFT) of the speech frame, and Wr[k] is the weighting
function of the r-th filter ranging over DFT indices Lr to Ur. The number R and the distribution
of filters may slightly differ among various implementations.
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Figure 2.13 – (Left) Weighting functions for mel-scale filtering and (right) smooth interpolation
of the DFT spectra X obtained when looking for all MFCC forced to zero except a single one
in {C0, ..., C4} equal to 1. The computation of these MFCC is done using the bank of weighting
functions in the left figure.

This somehow unobvious MFCC definition reflects the nonlinearity of timbre perception. The
filter distribution roughly corresponds to critical bands, whereas the logarithm of windowed ener-
gies approximates loudness perception. Finally, DCT decomposes the filtered spectrum into ortho-
gonal elements. Since the speech energy tends to concentrate in the first 13-19 coefficients, compu-
ted MFCC are often truncated [Benesty et al., 2008, Chap. 9, Rabiner and Schafer, 2011, Chap. 8].

The popularity of MFCC in the speech recognition domain comes from their ability to extract
relevant features from spectral envelopes. There had been even an interesting attempt to introduce
MFCC as an objective timbre measure [Terasawa et al., 2012,Terasawa et al., 2005]. Nevertheless,
provided that many MFCC-based speech synthesizers perform rather poorly [Chazan et al., 2000,
Milner and Shao, 2006,Yoon et al., 2007,Boucheron et al., 2011,Juvela et al., 2018], it seems that
the transformation removes some salient information from a signal.

Speech parametrization using the signal energy, the fundamental frequency, and the spectral
envelope works especially well for voiced sounds. As an example, Figure 2.14 presents the spectral
magnitude of the same vowel /e/ as in Figure 2.7. It can be noticed that the mentioned parameters
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accurately describe the magnitude of the harmonic signal. However, the representation almost
entirely ignores the phases of harmonics. Discarding the phase information is motivated by partial
agnosticism of the auditory system to signal phase, especially above 1 kHz [Benesty et al., 2008,
Chap. 4]. This effect could be caused by a roll-off of firing synchrony in auditory nerves above
2 kHz [Alves-Pinto et al., 2014].

Several speech encoding techniques used in vocal communication originate from major stu-
dies on sound perception, i.e., signal pre-emphasis, frequency masking of weak tones, nonlinear
quantization, and noise shaping [Bäckström, 2017, Chap. 4]. Consequently, the pseudo-speech si-
gnal used in secure communication should be robust against perceptually-oriented processing in
the spectral domain, not only against source-filter coding.
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Figure 2.14 – LPC analysis of vowel /e/: (left) time-domain waveform and (right) spectrum of
the waveform (blue solid line), frequency response of the 18th order LPC filter (red dashed line),
and the mel cepstrum smoothing obtained using the MFCC analysis and truncating MFCC above
n = 13 (green dashed line).

2.5 Voice coders

Digital voice communication systems send encoded speech as binary data and re-synthesize signal
at the reception side. The paramount role of voice codecs, or vocoders, is to reduce the transmission
bitrate without a significant perceptual quality degradation of decoded voice. Concurrently, voice
coding algorithms have to meet several operational goals, such as a small computational delay, low
computational and memory requirements, and finally, robustness to channel imperfections (e.g.,
lost frames, bit errors) [Benesty et al., 2008, Chap. 14].

Figure 2.15 illustrates a simplified diagram of a generic speech codec. The encoder’s input is
a low-passed speech signal sampled typically at 8 kHz (narrowband speech) or 16 kHz (wideband
speech). Low-pass filtering is done in accordance with the Nyquist-Shannon sampling theorem
which states that the highest signal’s frequency component should be at most half the sampling
rate. The reduction of the signal bandwidth from 20 kHz to 4 kHz or 8 kHz significantly lowers
the data rate for sending. On the other hand, reduced bandwidth degrades speech quality.

The speech samples are modeled as representing stationary signal segments (frames), usually
of some fixed or variable duration between 5 ms - 20 ms. Voice encoders map these input speech
frames into a set of parameters linked to the selected speech model and a distortion measure.
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Figure 2.15 – Block diagram of a generic speech encoder and decoder.

Besides, considerable compression gains (from 64 kbps to around 2 kbps and less [Ramasubra-
manian and Doddala, 2015]) are achieved through the exploitation of quantization and temporal
redundancy in speech. The result of the speech compression is a block-based binary stream of a
fixed or variable rate. Upon reception of a compressed data, the encoded and quantized parameters
are fed into a speech synthesizer, which produces a smoothly varying synthetic speech signal.

The speech model implemented in a voice coder determines the characteristics of the distor-
tion caused by compression. As an example, Figure 2.16 illustrates the same speech waveform
compressed by three different vocoders. Despite the perceptual similarity, the obtained waveforms
significantly differ. This result seems to question the possibility of designing a genuinely universal
and efficient method for sending data over arbitrary voice channels.
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Figure 2.16 – Recorded speech signal compressed by the selection of different voice coders. G.726
is an ADPCM coder, which directly compresses the waveform. Codec2 preserves the spectral
envelope and energy of the signal but discards phase information. AMR, an LPC coder, tries to
fit the signal waveform into the speech production model. Despite significant differences in their
representation, the presented signals are perceptually similar.

Voice coders can be roughly grouped into four major families: waveform coders, source-filter
coders, perceptual coders, and parametric coders [Benesty et al., 2008, Chap. 14]. As will be
briefly described later in the section, some speech models attract attention as candidates for speech
encryption and pseudo-speech synthesis. These models are implemented in low-bitrate parametric
coders with a simple structure that is easy to encode, manipulate, and randomize. On the other
hand, some coders seem to be suitable for data transmission due to the small or compensable
distortion they introduce.
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2.5.1 Waveform coders

Waveform coders directly encode the time-domain speech signal without strong assumptions re-
garding signal characteristics. The most straightforward waveform coding is adopted in the stan-
dard G.711, which describes the Pulse Code Modulation (PCM) with fixed µ-law or A-law pseudo-
logarithmic quantization [ITU-T, 1988f]. The µ-law quantization reflects the nonlinear intensity
perception and improves the perceptual speech quality compared to linear quantization. The enco-
ded signal is sampled at 8 kHz with 8-bit resolution, giving a constant bitrate of 64 kbps.

A modified version of PCM, referred Adaptive Differential PCM (ADPCM), is standardized
by G.726 [ITU-T, 1990]. Unlike the generic PCM coding, ADPCM encodes adaptively diffe-
rences between speech samples and reduces the bitrate of the 64 kbps PCM down to 40, 32, 24, or
16 kbps. Adaptive encoding does not degrade much the perceptual speech quality because conse-
cutive speech samples tend to be highly correlated. A similar approach to G.726 is adopted in
wideband G.722 [ITU-T, 2012a]. Additionally, the G.722 coder splits the signal bandwidth into
lower (0-4 kHz) and higher (4-8 kHz) parts, encoded separately using ADPCM. The subband se-
paration enables more efficient bit allocation in the lower frequency band, which is perceptually
more important than the higher band.

Waveform coders are suitable for encoding signals which are not necessarily speech-like and
are closer to traditional modulated signals. This characteristic may underlie efficient data transmis-
sion. For example, a series of International Telecommunication Union (ITU) standards describes
modem data transmission over digital telephony network [ITU-T, 1988c, ITU-T, 1988a, ITU-T,
1988b, ITU-T, 1988d, ITU-T, 1988e, ITU-T, 1998]. Some of the standardized modems are listed
in Table 2.5. The dominant technique used in these modems is amplitude and phase modulation
(QAM) of a single carrier. The modems take advantage of frequency division and trellis-coded
modulation at higher bitrates to efficiently use the available voice bandwidth.

While voice channels equipped with waveform coders seem to be the most universal for trans-
mission of encrypted pseudo-speech, their high bitrates exceeding 16 kbps are not appropriate for
use in speech encryption.

Table 2.5 – Selected modems used in data transmission over telephony network.
standard V.21 V.22 V.22bis V.27 V.29 V.34

bitrate (kbps) 0.3 1.2 2.4 4.8 9.6 33.6
modulation BFSK QPSK 16QAM D8PSK 16QAM QAM+TCM

2.5.2 LPC coders

Linear source-filter coders form a large family of algorithms that rely on the simplified Kelly-
Lochbaum (KL) speech production model [Kelly and Lochbaum, 1962]. The KL model approxi-
mates vocal tract by lossless acoustic tubes represented as a digital ladder filter. Vocal tract ap-
proximation by LPC coders is done similarly in every coder, using linear prediction analysis. The
fundamental difference characterizing source-filter coders is the way they encode the excitation.

The most well-known technique used in LPC coders is Code Excited Linear Prediction (CELP)
[Schroeder and Atal, 1985]. Instead of a simple switch between the voiced pulse train and the white
noise generator, as earlier described in Figure 2.5, CELP coders utilize a codebook of predefined
excitation signals. Given the residual of the prediction analysis, the coder searches the closest
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codebook vector (or the sum of vectors) by minimizing a Mean Squared (Weighted) Error (MSE)
[Benesty et al., 2008, Chap. 17]. Popular examples of CELP coders are Speex [Herlein et al.,
2009], Opus-Silk [Valin et al., 2012] and iLBC [Duric et al., 2004], all of them used in VoIP.

There are many CELP variants, depending on how the excitation codebook is structured and
exploited. Examples such as Algebraic CELP (ACELP) [Adoul et al., 1987,3GPP, 2018a], Vector
Sum CELP (VSELP) [Gerson and Jasiuk, 1990, ETSI, 2000] or Conjugate Structure CELP (CS-
CELP) [Salami et al., 1998, ITU-T, 2012b] have been standardized and adopted in the industry.

Figure 2.17 – Simplified diagram of an algebraic CELP synthesizer with an adaptive codebook.

Figure 2.17 depicts a simplified model of an adaptive ACELP speech synthesizer. The excita-
tion signal is formed from two sources: an adaptive dictionary built upon the past excitation signal
and a sparse algebraic codebook that encodes a difference between the previous and the current
frame. The codebook gains and the sparse algebraic excitation are estimated during the encoding
stage by minimizing the MSE.

The best-known example of an ACELP coder is Adaptive Multi-Rate (AMR) codec imple-
mented in cellular networks. The codec is available in narrowband (AMR-NB) [3GPP, 2018a]
and wideband (AMR-WB) [ITU-T, 2012c] versions and compresses sampled speech signals res-
pectively to 4.75 - 12.2 kbps and 6.6 - 23.85 kbps. AMR performs linear prediction analysis on
20 ms frames and computes LPC filters with 10 (AMR-NB) or 16 (AMR-WB) taps encoded as
line spectral pairs (LSP) [Soong and Juang, 1984].

The specificity of AMR is its sparse algebraic excitation encoder. The codebook search is per-
formed on 5 ms subframes, which in the narrowband scenario results in processing vectors of 40
samples. In the 12.2 kbps mode of AMR-NB, all positions in a subframe are grouped into five
tracks, where each track contains two pulses with amplitude −1 or +1 (Table 2.6). The encoder
chooses positions for ten non-zero pulses so that the combined output from the algebraic and adap-
tive dictionaries gives the closest representation of excitation. As more subframes are encoded, the
adaptive dictionary builds a refined model of excitation.

The construction of adaptive ACELP coders is motivated by the observation that excitation
and the vocal tract change slowly in time [Gay et al., 1974, Edwards and Chang, 2013]. Adap-
tive ACELP coders can represent complex excitation signals with high perceptual quality, given a
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sufficiently large portion of a stationary speech signal. This valuable property in speech encoding
becomes an obstacle in pseudo-speech transmission over voice channels with ACELP compres-
sion. A highly variable encrypted signal is very likely to be smoothed during compression, and
many information-carrying signal details could be discarded. Therefore, a robust pseudo-speech
signal should fit into the general source-filter speech model and be adapted to the ACELP excita-
tion encoder.

Table 2.6 – Possible positions of individual pulses in the algebraic codebook in the 12.2 kbps mode
of the narrowband AMR.

Track Pulse Positions
1 i0, i5 0, 5, 10, 15, 20, 25, 30, 35
2 i1, i6 1, 6, 11, 16, 21, 26, 31, 36
3 i2, i7 2, 7, 12, 17, 22, 27, 32, 37
4 i3, i8 3, 8, 13, 18, 23, 28, 33, 38
5 i4, i9 4, 9, 14, 19, 24, 29, 34, 39

2.5.3 Perceptual coders

In contrast to LPC coders, perceptual coders aim to encode general audio signals with speech
and background music. This flexibility of audio coders encourages their use in speech-related
applications in place of LPC coders. In the past years, a big limitation of general audio coders was
their large algorithmic delay. For example, AAC [ISO/IEC, 2006] at a 24 kHz sampling rate and a
24 kbps bitrate introduced delay of about 100 ms, too high for use in natural speech conversation
that requires end-to-end transmission delay no larger than 150 ms [Benesty et al., 2008, Chap. 18].
Gradual algorithmic optimizations introduced in recent coders opened new possibilities in many
real-time audio applications.

Perceptual coders rely on filterbank-based audio coding. The first processing step involves
transforming the signal to a spectral representation using analysis filterbanks, such as the Modi-
fied Discrete Cosine Transform (MDCT) [Princen et al., 1987], polyphase filterbanks [Rothweiler,
1983], or hybrid structures [Brandenburg et al., 1992]. In the next step, the transformed signal
is analyzed following a perceptual model, e.g., hearing thresholds, temporal and frequency mas-
king, and masking between tonal and noise signals [Hellman, 1972]. The perceptual analysis gives
information for optimum quantization and bit allocation.

The examples of general audio coders for real-time applications are Low-Delay Advanced
Audio Coder (AAC-LD) [ISO/IEC, 2006] used in Apple’s VoIP application FaceTime, and Opus’
Constrained Energy Lapped Transform (Opus-CELT) [Valin et al., 2012] used for real-time au-
dio streaming and in-chat gaming. Both coders are based on MDCT with partially overlapping
windows and perceptually-weighted spectrum quantization. Low algorithmic latency (20 ms and
below) compared to classical audio coders has been achieved by shortened frames, reduced look-
ahead in the filterbank analysis, and introducing several computational optimizations. However,
the data rates characterizing these coders, 32-64 kbps for AAC-LD and 48-128 kbps for CELT, are
very high. Consequently, they cannot be considered as good speech models for speech encryption.
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2.5.4 Low-bitrate parametric coders

At bitrates below 4 kbps, high quality speech encoding is very hard to obtain. Instead, parametric
coders capture only the key perceptual features of speech, preserving speech intelligibility at an
acceptable perceptual quality. A common characteristic of parametric coders is the use of sim-
plistic speech models that enable efficient compression at expense of lower speech fidelity. Due to
significant quality degradation, parametric speech coders are used in critically constrained environ-
ments, such as satellite and military communications [Benesty et al., 2008, Chap. 16]. Examples
of parametric coding techniques are Mixed Excitation Linear Prediction (MELP) [McCree et al.,
1996], Multiband Excited coding (MBE) [Griffin and Lim, 1988], Sinusoidal Transform Coding
(STC) [McAulay and Quatieri, 1986] and Waveform Interpolation (WI) [Kleijn, 1991].

Sinusoidal coders model a continuous-time speech signal locally as a sum of N equally-spaced
sine waves:

s(t) =
N−1∑
k=1

Ak sin(kω0 · t + ϕk), (2.10)

where ω0 is the fundamental angular frequency, and Ak and ϕk are the amplitudes and the phases
of harmonics. While the harmonic model is accurate for voiced sounds, it can also satisfactorily
represent unvoiced speech [McAulay and Quatieri, 1986]. The principle of sinusoidal coding is
thus to estimate the harmonic parameters for each speech frame. During synthesis, the mismatch
between consecutive frames is mitigated using sine interpolation or the overlap-add technique.

Probably the most popular sinusoidal coder is the open-source Codec2 1 designed by Rowe,
which offers speech compression rates 0.7 - 3.2 kbps and full speech intelligibility. In Codec2, each
speech frame of 20 ms or 40 ms is parametrized by its fundamental frequency, energy, spectral
envelope (amplitudes of harmonics), and voicing. The phase information in the compressed signal
is discarded and regenerated by the decoder.

Another model is used in MBE coders, where a speech frame in the spectral domain S(ω) is
represented as the product of the spectral envelope H(ω) and the excitation spectrum |E(ω)|:

S(ω) = H(ω)|E(ω)|. (2.11)

The MBE coder subdivides the excitation spectrum into several bands (20 or more) and classi-
fies each band as voiced/unvoiced. Consequently, the coder parametrizes speech signals by the
fundamental frequency, the spectral envelope, and a sequence of voicing decisions. The decoder
synthesizes all voiced bands using the sinusoidal model and reconstructs unvoiced bands with
white noise shaping. The improved version of MBE (IMBE) operating at 6.4 kbps is implemented
in satellite communications [Hardwick and Lim, 1991].

Although the most significant progress in source-filter and parametric coding took place in the
80s and 90s, it still inspires new speech synthesis techniques. Recently, Jean-Marc Valin (Mozilla)
and Jan Skoglund (Google LLC) proposed a new architecture of a speech coder, named LPC-
Net [Valin and Skoglund, 2019, Valin and Skoglund, 2019]. The mathematical model of speech
synthesis implemented in LPCNet is similar to all other LPC coders representing discrete-time

1. https://www.rowetel.com/wordpress/?page_id=452

https://www.rowetel.com/wordpress/?page_id=452
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speech signal s[n] as the linear combination of past samples p[n] and a residual (an excitation) e[n]:

s[n] = p[n] + e[n] (2.12)

p[n] =
16∑

k=1
αks[n− k] . (2.13)

Unlike in traditional coders, however, the excitation signal e[n] is modeled by using a trained
neural network.

The block diagram of the synthesis part of LPCNet is illustrated in Figure 2.18. The coder
operates on 10 ms speech frames sampled at 16 kHz. The frames are encoded using 20 (quantized)
features: a pitch period, a soft voicing, and 18 Bark-scale cepstral coefficients similar to previously
described MFCC. During speech synthesis, these 18 cepstral coefficients are transformed into
linear prediction coefficients α1, ..., α16.

Figure 2.18 – LPCNet architecture [Valin and Skoglund, 2019].

The speech synthesizer consists of two neural networks. The first network takes as an input
the 20-dimensional feature vector and once per 10 ms outputs a conditioning vector f used by the
second so-called sample-rate neural network. The role of the sample-rate network is to predict a
probability distribution of the excitation Pr(e[n]) at the time n, given four inputs: the previous
excitation sample e[n − 1], the past synthesized speech sample s[n − 1], the current prediction
p[n] and the computed conditioning vector f . The excitation e[n] is obtained by sampling from the
predicted distribution. This last feature distinguishes LPCNet from deterministic speech coders.

LPCNet achieves remarkable results in producing near-natural wideband speech and com-
pressing speech signals down to 1600 bps. Additionally, the optimized architecture of the coder
makes its implementation on low-power devices an achievable goal. However, LPCNet requires a
considerable amount of data and time to train the networks. Nevertheless, after extensive training,
the coder’s performance shows how little information is needed to produce intelligible speech in
real-time and that speech quality can be enhanced using synthetic-only excitation.

Parametric coders rely heavily on Vector Quantization (VQ) [Gray, 1984] and other codebook-
based techniques, providing significant compression gains [Ramasubramanian and Doddala,
2015]. In combination with a simplified structure of speech models, low-bitrate parametric co-
ders are desirable candidates for use in speech encryption. On the other hand, data transmission
over a voice channel with parametric speech coding is significantly constrained by the implemen-
ted speech model. Unless the pseudo-speech signal structure is adapted to a particular channel, the
achievable data rate would be prohibitively low.
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2.6 Digital voice channels

Voice channels cannot be analyzed apart from the infrastructure that enables long-distance com-
munication. The system parameters (e.g., transmission delay, drop-out probability, available band-
width, handheld devices used) significantly impact the voice channel properties. Furthermore, a
recorded speech signal is usually subject to quality-enhancing processing, such as background
noise suppression or echo cancellation. While these algorithms considerably improve the user’s
experience of speech perception, they also add more complexity upon standard voice compres-
sion.

This section outlines two popular mobile voice communication systems: wireless cellular net-
works (GSM/UMTS) and VoIP. The description focuses on a few selected elements of the analyzed
systems, which detail important voice channel properties and may impact the encrypted pseudo-
speech transmission.

Cellular networks of the second and the third generation (GSM/UMTS) are circuit-switched
systems for mobile voice communication [Holma and Toskala, 2005, Chap. 2, Schwartz,
2005, Chap. 8, Eberspächer et al., 2008]. Figure 2.19 depicts a simplified schematic of the es-
tablished vocal connection between two users equipped with proper mobile phones and registered
to different cellular base stations (BS). In the presented situation, one-way voice transmission over
cellular networks consists of three stages. The speech is firstly encoded on the mobile phone by
the AMR coder and sent as data signal from the mobile device up to the BS. Afterward, the station
decompresses the encoded bits into 8 kHz PCM speech samples at the 64 kbps bitrate [ITU-T,
1988f] and forwards the signal to the destined BS through the public switched telephone network
(PSTN), or the integrated services digital network (ISDN) [ITU-T, 1993]. Upon reception of the
PCM samples, the receiving BS encodes the speech again with AMR and sends the data to the
recipient.

The operation of cellular networks reveals that the sent voice can be processed twice by two
different vocoders. Provided that AMR coder strongly compresses speech signals, the mean opi-
nion score (MOS) [ITU-T, 1996a, ITU-T, 2016a] of the perceptual speech quality in cellular com-
munication is unsurprisingly mediocre [ETSI, 2018c]. On the other hand, circuit-switched vocal
links in cellular networks have to meet very stringent requirements for the Quality of Service
(QoS). More specifically, the transmission delay between two mobile phones should not exceed
100 ms for the 95th percentile of the delay distribution, and mobile phones are granted the mini-
mum bandwidth enabling a smooth conversation [3GPP, 2018c].

Figure 2.19 – Simplified model of a 2G/3G cellular voice connection.
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Unlike cellular networks, VoIP does not guarantee any QoS. According to the International
Standardization Organization (ISO) recommendation G.114, the maximum transmission delay
should stay below 150 ms [ITU-T, 2003a]. These proposed guidelines often cannot be met, es-
pecially in large-distance communication with the communication latency as large as 300 ms and
above [ITU-T, 2003a]. Moreover, the quality of transmitted speech depends on the available net-
work throughput and reliability. Excessive average latency, jitter, and lost packet probability of a
poorly performing network may significantly lower the user’s experience [Benesty et al., 2008,
Chap. 15]. In order to counteract the quality degradation, several techniques have been adopted in
VoIP technology, such as traffic prioritization, dynamic bandwidth allocation, half-duplexing, lost
packet concealment, and discontinuous transmission (DTX). However, given excellent network
conditions, VoIP offers a high voice quality with up to 4.5 MOS score [Goudarzi et al., 2011].

It is worth noticing that cellular networks and VoIP pose different challenges to the secure
voice communication system under study. Cellular networks offer reliability and stability, which
is an advantage for maintaining pseudo-speech synchronization. Nonetheless, strong voice com-
pression significantly limits the available throughput for encrypted speech signals and prevents
decent voice quality after signal decryption.

On the contrary, mild signal compression and the high throughput available in VoIP applica-
tions enable sending more encrypted data in the audio signal. However, the high probability of lost
and delayed packets may deteriorate communication. From the operational standpoint, the encryp-
ted voice data included in delayed packets is irreversibly lost. Moreover, lost-packet concealment
in VoIP that fills missing fragments of the signal using some synthetic signal generator may hinder
systems’ synchronization.

Apart from network traffic management, modern voice communications systems apply a va-
riety of speech-enhancing algorithms on the recorded voice. The most popular among these
techniques are Voice Activity Detection (VAD) [Bäckström, 2017, Chap. 13, ITU-T, 2012b],
Echo Cancellation (EC) [ITU-T, 2015], Adaptive Gain Control (AGC) [Heitkamper and Walker,
1993], Noise Suppression (NS) [ETSI, 2018b] and Comfort Noise Generation (CNG) [ITU-T,
2012b, ETSI, 2018a].

Voice Activity Detection performs real-time speech analysis to classify voice frames as
speech-like or containing either silence or background noise. The classification is made by a spe-
cialized unit based on the range of temporal and spectral features (e.g., tonality, spectral envelope,
signal intensity, zero-crossing rate) [Bäckström, 2017, Chap. 13]. Depending on the classifier’s
decision, the analyzed speech frames may be passed through the channel or rejected. Since in na-
tural conversation speakers talk for less than 40% of the time [Freeman et al., 1989], silent frame
suppression improves network bandwidth allocation and saves some phone energy.

Some detectors are paired with the speech encoder. For example, Figure 2.20 illustrates a dia-
gram of the VAD classifier cooperating with AMR [3GPP, 2018b]. The classifier performs filter-
bank analysis of speech frames and re-uses intermediate parameters from the AMR pitch analysis
(pitch period, autocorrelation values) and the long-term linear prediction (complex signal autocor-
relation vector). Given the inputs, the algorithm compares the estimated background noise level
with the filterbank analysis result and calculates the noise-to-signal energy ratio. The classifier
raises the VAD flag when the computed ratio stays above an adaptive threshold for some time.

Another negative phenomenon is an echo that causes an annoying sensation of hearing one’s
own voice with a delay larger than 40 ms [ITU-T, 2003b]. The speech echo often occurs due to
a cross-talk between transmission cables or when a loudspeaker’s output is again captured by the
device’s microphone [Lin et al., 2008]. Canceling the echo is usually done using adaptive filtering
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Figure 2.20 – Diagram of the Option 1 VAD included in the AMR encoder [3GPP, 2018b].

[ITU-T, 2015, Benesty et al., 2008, Chap. 45]. The echo cancellation unit models the echo in
real-time and subtracts the modeled signal from the recorded speech.

Although some VAD and speech enhancing algorithms can be found in various recommen-
dations and specifications, their exact implementations are often proprietary solutions unavailable
to a broad public. Since phone manufacturers, VoIP application developers, and network provi-
ders may incorporate dedicated speech enhancing techniques, accurate voice channel modeling is
often intractable. Instead of reverse-engineering these algorithms, it is usually more practical to
search for techniques that could reset VAD’s counters and consequently block VAD’s activation.
For instance, Figure 2.21 illustrates the signal sent over the WhatsApp application between the
same phones as in the first example presented in Figure 2.1. A sensible manipulation of frequency
bands and silence insertions successfully prevented signal suppression. Nevertheless, it is still
worth considering the most fundamental properties of speech-enhancing algorithms to understand
the principal properties of a good synthetic signal suitable for encrypted data transmission.
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Figure 2.21 – Phase-modulated harmonic signal sent over the WhatsApp application. The frequent
alternation of audio bands in the signal and silence insertions may counter adaptive noise suppres-
sion and voice activity detection algorithms in a voice channel.
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2.7 Summary

This chapter described the principles underlying the operation of voice channels in cellular net-
works and VoIP. The chapter explained the speech production and auditory mechanism, and gave
some hints on the idea behind source-filter coding and perceptual coding. Finally, the chapter
presented some selected speech coders and speech processing techniques.

A diversity of speech coding techniques adopted in modern communications suggests that
designing a universal technique for sending encrypted speech over arbitrary voice channels in real-
time would be extremely difficult. Moreover, secure voice communication over voice channels is
possible only when the channel capacity is sufficiently large for sending speech data in real-time.
Instead, it may be worthwhile to target specific types of voice channels, depending on a usage
scenario. Since cellular networks and many prominent VoIP applications rely on source-filter and
waveform coding, it may seem reasonable to make encrypted signals compatible with generic
LPC coders. Nevertheless, the pseudo-speech signal must be tuned to a particular voice channel
due to implementation differences that modify channel’s characteristics. That includes a dedicated
strategy for countering the VAD algorithm.

Furthermore, data encoding onto pseudo-speech must be robust against perceptual proces-
sing in the spectral domain. Thus, the attractive idea is to relate encoded data with parameters of
vowel-like sounds that are compatible with source-filter, perceptual, and waveform coders. The
principles of voiced sounds have been exploited in Chapter 3 describing a novel technique for data
transmission over voice channels. However, despite the high robustness of the produced signal,
we discovered that error-less data transfer over real voice channels cannot be guaranteed. This
communication characteristic appeared troublesome because traditional cryptographic algorithms
require perfect data reception for decryption. In order to overcome this limitation, we designed
a dedicated distortion-tolerant cryptographic scheme that can decrypt data approximately. The
distortion-tolerant speech encryption scheme is introduced and described in Chapters 4 and 5.

Due to a limited bandwidth available for communication over digital voice channels, it is im-
possible to encrypt and send a complete speech signal. Instead, it is necessary to compress speech
before encryption, preferably using one of the low-bitrate parametric speech coders. The most
suitable coders are those using a simple speech model with a clear relation between the model pa-
rameters and the perceptual speech qualities (pitch, loudness, timbre). For example, the sinusoidal
speech model and the Multiband Excited (MBE) model are good candidates. However, a common
disadvantage of parametric coders is their low quality of decoded speech. The new generation of
synthesizers using trained neural networks, such as LPCNet, may significantly improve perceptual
speech quality at a very low bitrate.

Chapter 3 introduces a technique for sending data over channels with LPC coders. The tech-
nique relies on short harmonic waveforms that mimic the structure of harmonic vowel signals. The
method is compatible with cellular networks and many VoIP applications, and is robust against
some VAD algorithms.
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3.1 Motivation

Secure data transmission over voice channels (telephone lines) dates back to the early 40s, and
the development of the probably first secret telephony system for use during World War II, ni-
cknamed SIGSALY or ‘Green Hornet’ [Bennett, 1983]. However, the term modem (‘modulator-
demodulator’) in context of a device converting data into the format suitable for transmission
originated in the late 50s when referring to Bell 101 modem developed by Bell Labs. The modems
were part of SAGE (Semi-Automatic Ground Environment), the largest computer-aided informa-
tion system of that time [Hellige, 1994]. Their role was to transmit digital radar pictures over
telephone wires using frequency-shift keying (FSK) modulation, initially at 750 bps and later at
1.3 kbps and 2.1 kbps. In the following years, the rapid progress in modem technology contributed
to creating the digital subscriber line (DSL) with data rates over 10 kbps [Golden et al., 2006].

A bit surprisingly, the possibility of exploiting cellular vocal networks for data transmission
went unnoticed until the seminal work of Katugampala, Vilette, and Kondoz in 2003 [Katugampala
et al., 2003], in which the authors suggested sending encrypted bits of compressed voice between
two cellular phones. Since then, cellular vocal networks have attracted attention as a potential
high-priority, low-bandwidth data communication channel with errors. The work on Data over
Voice (DoV) technology in cellular networks enabled new applications, such as emergency call
system eCall [Werner et al., 2009], messaging over voice [Dhananjay et al., 2010], point of sell
(POS) financial transactions [Mezgec et al., 2009], automatic network address translator (NAT)
traversal [Patro et al., 2011], and secure data and voice communications [Katugampala et al.,
2005, Chen and Guo, 2011].

With the quickly expanding data-driven 4G networks and the deployment of 5G networks, the
use of voice channels for sending data diminishes. Nevertheless, DoV techniques are still crucial
in secure voice communications, for example, provided by Crypto Phones or other specialized
devices [Krasnowski et al., 2020]. On the other hand, voice channels can be maliciously used for
extruding private data or in Advanced Persistent Threat (APT) attacks [Lee et al., 2017].

The crucial challenges related to DoV are a consequence of principles underlying digital voice
channels. Namely, voice channels aim at preserving speech intelligibility and quality while redu-
cing the perceptually redundant information. In contrast to classical data channels, voice channels
significantly distort the sent signal due to transcodings and audio processing. Moreover, modern
digital voice channels are selective to signal parameters conforming to the speech model adopted
in a particular system. To mitigate signal degradation caused by voice channels, several authors
proposed DoV techniques based on encoding the data signal into speech-like parameters, code-
book training, or optimized modulation techniques.

Katugampala et al. [Katugampala et al., 2003] proposed a system that uses predefined code-
books to map bits into vocal parameters: energy, pitch, and spectral envelope (encoded as line
spectral pairs, LSP [Soong and Juang, 1984]). The encoded parameters are transformed into a
pseudo-speech signal adapted to transmission over a cellular network. Data extraction is done by a
paired speech analyzer, which restores vocal parameters from the signal and decodes codebook in-
dices. The system enabled transmission over a real GSM voice channel at the rate of 3000 bps with
2.9% BER [Katugampala et al., 2005]. Similar techniques were presented by Ozkan et al. [Özkan
and Örs, 2015], and Rashidi et al. [Rashidi et al., 2008], who achieved respectively transmission
rates of 1600 bps and 2000 bps in a simulation environment.

LaDue et al. [LaDue et al., 2008], and Sapozhnykov and Fienberg [Sapozhnykov and Fien-
berg, 2012] investigated genetic and pattern matching algorithms to construct codebooks of short



38 CHAPTER 3 — Data transmission over voice channels

speech-like waveforms. Instead of synthesizing pseudo-speech, the authors proposed encoding
bitstream directly into a sequence of symbols selected from a trained wavetable. Upon reception,
received symbols were decoded with a bank of matched filters. The technique achieved the remar-
kable 4000 bps with 2.3 % BER over enhanced full rate (EFR) voice channel. Unfortunately, the
training process was time-consuming and required considerable computational resources. Moreo-
ver, the obtained wavetable was compatible with a unique channel model and hence impractical in
real communication.

The problem of long and heavy computations has been tackled by Shahbazi et al. [Shahbazi
et al., 2009], and Boloursaz et al. [Boloursaz et al., 2013], who simplified the codebook construc-
tion by limiting the search to signals from the TIMIT speech database [Zue et al., 1990]. Parallelly,
Kazemi et al. [Kazemi et al., 2015] proposed an exciting idea to exploit sphere packing techniques
to construct waveforms with a large minimum distance and an improved detection rate.

Finally, there exists a range of DoV techniques based on well-established, classical signal
modulation. Zhan Xu [Xu, 2017], Chmayssani and Baudoin [Chmayssani and Baudoin, 2008]
tested by simulations phase shift keying modulation (PSK) and quadrature amplitude modula-
tion (QAM), and achieved bitrates within the range 1 - 3 kbps. Ali et al. [Taleb Ali et al., 2013]
exploited M-ary frequency shift keying (M-FSK), whereas Dhananjay et al. [Dhananjay et al.,
2010] introduced a modified binary FSK (BFSK) tolerant to a small frequency deviation. Chen
and Guo [Chen and Guo, 2011] reported a solution using orthogonal frequency division multi-
plexing (OFDM) modulation combined with PSK.

An inspiring technique based on Amplitude Shift Keying (ASK), named PCCD-OFDM-ASK,
has been presented by Mezgec et al. [Mezgec et al., 2009]. Phase-Continuity and Context Depen-
dency (PCCD) refers to techniques providing phase continuity of the modulated signal. In PCCD-
OFDM-ASK, blocks of 8-bit sequences are encoded onto eight orthogonal harmonics, numbered
from 1 to 8. In contrast to classical OFDM, each bit in the 8-bit block is represented by the pre-
sence or absence of an orthogonal carrier. For instance, the binary 8-bit sequence ‘10001010’ is
mapped to a symbol with harmonics present only at positions 1, 5, and 7. The scheme offers robust
transmission up to 500 bps over real cellular voice channels.

This chapter introduces a new DoV codebook-based modulation over cellular networks and
VoIP for the needs of secure voice communication. The novelty comes from our simplified and
universal codebook design process compared with the usual extensive codebook training on a se-
lected voice model. Nevertheless, the method can be adapted to a particular channel, avoiding
codebook over-tuning in the presence of fluctuating channel characteristics. Modulation parame-
ters are easily adjustable in order to balance the transmission bitrate and the robustness to errors.

The proposed technique was thoroughly tested with real voice calls. The scheme achieves up
to 6.4 kbps over VoIP voice channels using 4G wireless network and 2.4 kbps over 3G cellular
calls (see Section 3.5.3). It also enables safe voice transmission with an effective binary error rate
significantly below 1%.

This chapter is organized as follows. Section 3.2 outlines challenges related to sending data
over voice channels with LPC-based speech compression. Section 3.3 investigates signal distor-
tion introduced by three selected LPC coders: AMR, Speex, and Opus-Silk. Section 3.4 describes
the novel DoV technique, including codebook construction, signal generation, and demodulation.
Section 3.5 presents performance results obtained by simulations and real-world experiments,
and Section 3.6 proposes a secure voice communication scheme using DoV. Finally, Section 3.7
concludes the chapter.
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3.2 Digital voice channels

This section introduces crucial challenges related to data transmission over voice channels. It out-
lines the specific behavior of voice channels, very different compared to classical communication
channels, and highlights the desired properties of DoV signals.

3.2.1 Voice channel characteristics

In real-world implementations, a complete voice channel is typically the concatenation of algo-
rithms that transform a speech signal into binary data suitable for transmission over the network.
Despite the lossy nature of speech processing, the received binary information is sufficient to re-
synthesize a speech perceptually similar to the initial. However, from a DoV perspective, it is more
convenient to consider voice channels as communication channels with particular constraints and
signal distortion characteristics.

The core elements of any digital voice channel are voice codecs, which compress and encode
sampled speech waveform exploiting principles of speech production and perception [Rabiner
and Schafer, 2011]. Real-time voice coders usually process speech on a frame basis by mapping
portions of a speech waveform into sets of vocal parameters. These algorithms may perform high-
pass filtering, differential encoding, and adaptive quantization to improve the compression ratio
depending on the available network throughput. Unfortunately, such operations add memory and
latency to a voice channel, and make it non-linear and non-stationary.

In addition to voice compression, modern voice communication systems apply techniques such
as Voice Activity Detection (VAD) [Bäckström, 2017], Adaptive Gain Control (AGC) [Heitkam-
per, 1995] or Noise Suppression (NS) [Tsoukalas et al., 1997]. In opposition to voice coders, the
implementation of these algorithms is rarely public and their impact on the DoV cannot be fully
predicted.

Combining all the mentioned elements of real voice channels, achieving an analytic model of
signal distortion is usually intractable. Nevertheless, it is still worthwhile to consider the most fun-
damental properties of voice channels and construct the DoV scheme agnostic to small variations
of the voice channel characteristics.

3.2.2 LPC coders

Most of the voice coders operating in the upper-middle bitrate range (10 kbps –16 kbps) listed in
ITU, IETF and 3GPP standards, and which are widely adopted in cellular and VoIP systems, rely
on Linear Predictive Coding (LPC). LPC coders take their inspiration from the simplified speech
production model, often referred to as a source-filter model [Fant, 1960, Lochbaum and Kelly,
1962]. According to the model, voice sound originates from a single source e(t) and is filtered
by a vocal tract with an impulse response v(t). Such a simplification is justified for voiced and
stationary sounds, which can be approximately represented by the buzzing excitation produced in
the glottis and shaped when passing through the pharynx and between tongue, teeth, and lips. The
resulting signal has the form s(t) = e(t) ∗ v(t), where ∗ denotes the convolution product.

However, considering voice as the convolution of excitation and vocal tract shaping would be
of little practical value without effective methods for separating these components. The excitation
and vocal tract characteristics can be well approximated during LPC analysis (hence LPC coders).
The outputs of LPC analysis consist of a linear prediction filter describing the vocal tract’s filtering
effect and a residual that can be viewed as an excitation signal.
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Figure 3.1 – LPC analysis of vowel /a/: (a) time domain waveform, (b) spectrum of the waveform
(blue solid line) and frequency response of the 12th order LPC filter (red dashed line), (c) residual
of LPC analysis (solid blue line) and excitation peaks (red dashed line), (d) frequency spectrum of
a residual.

As an example, Figures 3.1(a) and 3.1(b) present 100 ms of a real recording of vowel /a/ in the
time and the frequency domain. It can be noticed that this spectrum has a harmonic structure and
could be accurately parameterized by its energy, spectral envelope, and fundamental frequency.
The dashed line in Figure 3.1(b), which coincides with the spectral envelope of a vowel, represents
the frequency response of the estimated LPC filter. On the other hand, the peaks of the residual
signal in Figure 3.1(c) correspond to a buzzing excitation from the glottis. Finally, the frequency
spectrum of a residual in Figure 3.1(d) has less different formants (acoustic harmonic resonances),
compared to the initial spectrum in Figure 3.1(a). Thus, we can reach the intuitive conclusion that
LPC analysis separates the spectral envelope from the harmonic content of the signal.

Source-filter separation emphasizes the relevant vocal information, which is advantageous in
signal compression. Figure 3.2 depicts a simplified diagram of speech analysis and synthesis by a
generic LPC coder. The encoder estimates LPC coefficients and calculates the residual of a small
portion of speech (typically 5ms –20ms). Lossy encoding of the residual puts stress on preserving
the harmonic content of the speech, whereas LPC filters are often weighted to boost formants,
taking advantage of the human auditory system’s specificities and information redundancy. From
this point, it is understandable that vocal parameters in a waveform are usually well preserved du-
ring compression, while the less speech-like are removed. The output waveform is also smoothed
in the time and spectral domains to remove ringing effects caused by frame-based processing.
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Figure 3.2 – Simplified diagram of LPC encoder and decoder.

Linear Predictive Coding achieves remarkable results in representing and compressing
smoothly varying voiced sounds but often struggles with encoding short and noisy plosives (like
/p/ or /t/), which do not fit into the source-filter speech model. To improve the robustness for
noisy sounds, LPC coders incorporate more flexibility into the excitation encoder. This observa-
tion suggests that the potential performance of the DoV technique would mostly depend on the
accuracy and reaction time of residual encoding.

Despite preserving core speech intelligibility, time-domain LPC coding destroys the fine time-
structure of compressed signals. Thus, it is not obvious how voice channels equipped with LPC
coders modify the sent signal. In Section 3.3, we describe a simplified framework that will allow
us to evaluate the typical distortion introduced by LPC voice channels.

3.3 Data over LPC voice coders

This section presents a novel DoV technique based on codebooks of phase-modulated harmonic
waveforms. The proposed solution is the result of extensive simulation experiments with three
representative LPC narrow-band coders: AMR [3GPP, 2018a], Speex v1.2 [Herlein et al., 2009]
and Opus-Silk v1.3.1 [Valin et al., 2012].

The section begins with a thorough analysis of signal distortion characteristics caused by se-
lected voice compression algorithms. The investigation leads to a significant improvement in har-
monic signal demodulation. Finally, the section proposes a simplified codebook design approach.

3.3.1 Multi-tone modulation over LPC voice coders

By their construction optimized to vowel sounds, LPC coders are suitable for synthesizing multi-
tone signals. On the other hand, the versatility of residual encoding allows easy manipulation
of phase information, which above 2 kHz typically plays a lesser role in speech intelligibility
[Rabiner and Schafer, 2011,Alves-Pinto et al., 2014]. Combining phase modulation with multiple
subcarriers is particularly interesting, as it opens the possibility of applying spectrally-efficient
orthogonal frequency-division multiplexing (OFDM) modulation [Nee and Prasad, 2000]. The
OFDM approach has been already analyzed in the context of DoV in [Chen and Guo, 2011]. Their
solution is based on 27 independently modulated carriers and achieved a high bitrate of 2.4 kbps
over the (now obsolete) RPE-LTP GSM voice coder at an acceptably low error rate.

Figure 3.3 presents the signal-to-noise ratios (SNR) of a multi-tone signal compressed by
AMR, Speex, and Opus-Silk at different compression rates. It may be noticed that the distortions
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introduced by the different coders are roughly similar. However, the large amount of distortion
poses a big challenge for reliable data transmission, especially at compression bitrates below 10
kbps. Thus, a better understanding of the characteristics of signal distortion would help designing a
more robust communication scheme. For the sake of consistency, the following experiments were
made only for fixed compression bitrates: AMR 12.2 kbs, Speex 11 kbps, and Opus-Silk 12 kbps.
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Figure 3.3 – SNR of a multi-tone signal compressed by a selection of LPC coders. The multi-tone
signal consisted of eight harmonics at frequencies 400 Hz, 800 Hz, ..., 3200 Hz with a 400 Hz
step. The harmonics were independently phase-modulated with a modulation of order 4 and a
modulation rate of 200 baud.

(a) 400 Hz. (b) 800 Hz. (c) 1200 Hz. (d) 1600 Hz.

Figure 3.4 – Scatter plots of a four-harmonic signal compressed by AMR. Each plot represents
the distortion of one phase-modulated harmonic at 400 Hz, 800 Hz, 1200 Hz, and 1600 Hz, with
a modulation rate of 200 baud. Blue points correspond to compressed symbols, red dots denote
the initial phase constellation, whereas yellow dots denote the sample means of compressed four
symbols. The angle of the phase shift (restricted by black rays) varies in frequency.

Since LPC coders process the signal jointly, it is not clear how the presence of other harmonics
affects the distortion of each component. The distortion introduced by each studied coder has a
similar nature, as presented in Figure 3.4. Apart from random noise-like distortion, all samples are
subject to constant phase shift (this effect was also observed in [Lee et al., 2017, Xu, 2017]). The
phase shift depends on the frequency and the specific LPC coder, but not on symbol duration. The
phase shift is probably introduced during speech synthesis by the LPC reconstruction filter with a
non-uniform phase response.

Figure 3.5 presents the energy-normalized variance of spectral distortion and related error rates
of phase detection in multi-tone signals compressed by a selection of LPC coders. It can be noticed,
that there is a direct relation between the variance of distortion and the error rate. In addition, as
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Figure 3.5 – The average energy-normalized variance of distortion and related error rates of phase
detection in multi-tone signals compressed by a selection of LPC coders. The averaged variance
was measured over the in-phase/quadrature (I/Q) representation for the four symbols constella-
tion. The four variances are computed along radial lines from the origin to the sample mean of the
received decoded symbols (see Figure 3.4). The initial multi-tone signal consisted of four indepen-
dently phase-modulated harmonics at frequencies 400 Hz, 800 Hz, 1200 Hz, and 1600 Hz, with a
modulation order 4 and a modulation rate of 200 baud. Then, the set of carriers was expanded by
adding harmonics at 2000 Hz, 2400 Hz, ..., 3200 Hz with a 400 Hz step. Colored bars denote the
lowest and highest values among harmonics, and bullets indicate the average.

the cardinality of harmonics in the multi-tone signal goes up, the variability of error rates rises.
Nevertheless, harmonics are not distorted uniformly, which is especially noticeable for Silk. It is
because the codec puts a more significant emphasis on preserving lower frequencies [Valin et al.,
2012], especially important for the auditory perception of voice [Gold et al., 2011].

The sample density distributions of this noise-like distortion are approximately Gaussian, like
those presented in Figure 3.6. As the frequency goes up, the width (i.e., variance) is getting larger.
This observation supports the intuition that the harmonics at lower frequencies are generally less
distorted by compression.

Figures 3.7(a) and 3.7(b) present Mardia’s bivariate skewness and kurtosis of a noise-like
distortion. Mardia’s skewness and kurtosis of a p-variate random sample x1, ..., xn whose sample
mean vector x̄ and sample covariance S are defined as [Mardia, 1970]:

skewness = 1
n2

n∑
k=1

n∑
ℓ=1

[
(xk − x̄)S−1(xℓ − x̄)

]3
, (3.1)

kurtosis = 1
n

n∑
k=1

[
(xk − x̄)S−1(xk − x̄)

]2
. (3.2)

For a sample taken from a p-variate normal distribution, the statistics simplify to:

skewness = 0 and kurtosis = p(p + 2) . (3.3)



44 CHAPTER 3 — Data transmission over voice channels

0 0.5 1 1.5 20.0

0.02

0.04

0.06
AMR

SP EEX

SILK

(a) Radial axis, 800 Hz.

−0.5 0 0.50.0

0.02

0.04

0.06
AMR

SP EEX

SILK

(b) Transversal axis, 800 Hz.

0 0.5 1 1.5 20.0

0.02

0.04

0.06
AMR

SP EEX

SILK

(c) Radial axis, 1600 Hz.

−0.5 0 0.50.0

0.02

0.04

0.06
AMR

SP EEX

SILK

(d) Transversal axis, 1600 Hz.

Figure 3.6 – The average sample probability density function of a distortion of two harmonics
at frequencies 800 Hz and 1600 Hz, compressed by a selection of LPC coders. The compressed
signal consisted of four independently phase-modulated carriers at frequencies 400 Hz, 800 Hz,
1200 Hz, and 1600 Hz, with a modulation order 4 and a modulation rate of 200 baud. The averaged
sample probability density function was measured over the I/Q representation for the four symbols
constellation. The four density functions along radial axes are computed along the lines from the
origin to the sample mean of the received decoded symbols (see Figure 3.4). The four transversal
axes are perpendicular to the radial axes and intersect the sample mean of the received decoded
symbols. The x-axes are normalized to the initial amplitude value of each harmonic.

It can be noticed that in the case of AMR and Speex (and to some extent Silk), the computed
Mardia’s skewness and kurtosis are close respectively to 0 and 8, which are the values characte-
rizing symmetric bivariate normal distribution [Mardia, 1974]. Crucially, distortion is not signi-
ficantly correlated both in time and between harmonics (Figures 3.7(c) and 3.7(d)). As a result,
there is some evidence to treat the noise-like distortion as independent and memoryless. It can be
seen as an advantage for demodulation but is also quite surprising because the analyzed coders
are deterministic and non-linear. It suggests that distortion characteristics depend not only on LPC
coders but also on statistical properties of the modulated signal.

An open question remains, though, for other LPC coders at similar compression rates. Pre-
cisely, LPC coding’s basic principles do not imply the independence of distortion in the time
and the frequency domain. On the other hand, it is arguable that such properties of the proposed
modulation, like harmonicity and constant spectral amplitude, are compatible with LPC coding’s
fundamental properties. Therefore, it should be suitable for the vast majority of LPC coders.
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Figure 3.7 – Statistical parameters of spectral distortion in multi-tone signals compressed by a
selection of LPC coders. The initial multi-tone signal consisted of four independently phase-
modulated harmonics at frequencies 400 Hz, 800 Hz, 1200 Hz, and 1600 Hz, with a modulation
order 4 and a modulation rate of 200 baud. Then, the set of carriers was expanded by adding har-
monics at 2000 Hz, 2400 Hz, ..., 3200 Hz with a 400 Hz step. Colored bars denote the lowest and
highest values among harmonics, and bullets indicate the average.

3.4 Proposed DoV technique

Figure 3.8 depicts the typical diagram of a data transmission system over voice channel, which
uses a codebook of M pre-defined discrete-time audio waveforms. Signal generation is a two-step
procedure that firstly encodes the binary input into a sequence of indices (m0, m1, ...) and then
maps these indices into a concatenation of codebook symbols s = (sm0 , sm1 , ...). Finally, the
resulting discrete-time audio signal s is played to the (digital) audio input of a voice channel.

On the reception side, the demodulator splits the received sampled audio signal r =
(rm0 , rm1 , ...) into short chunks of fixed length corresponding to the symbol duration, and then
performs symbol-by-symbol matched-filtering with all codebook entries. In the last steps, the de-
modulator extracts the indices of the codebook symbols giving the highest correlation value and
decodes the binary information.

In the proposed DoV technique, a codebook symbol is a vector of waveform samples sm =
[sm[0], ..., sm[N −1]] sampled at 8 kHz and of duration between 2.5-10 ms. Each symbol consists
of some small number K (between 7-10) of orthogonal harmonics modulated by quadrature phase-
shift keying (4-PSK):
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Figure 3.8 – Modulation and demodulation of a discrete DoV signal using a codebook of M pre-
defined discrete audio waveforms.

sm[n] = ℜ
(

K−1∑
k=0

Cm,k exp
(

j(k + k0)ω0
n

N

))
, n = 0, 1, ..., N − 1, (3.4)

where 0 ≤ m < M is the symbol index, ω0 denotes the fundamental angular frequency and k0 is
the subband of the lowest harmonic. Finally, Cm = {Cm,k | 0 ≤ k < K} denotes a sequence of
K complex PSK symbols over the phase-amplitude plane:

Cm,k = A · exp(j2πφm,k/4), k = 0, ..., K − 1, (3.5)

where A is the amplitude and Φm = {2πφm,k/4 | 0 ≤ k < K, φm,k ∈ Z4} denotes a sequence
of PSK phases (the selection of phase sequences will be detailed in Section 3.4.1). Examples of
such waveforms are presented in Figure 3.9.
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Figure 3.9 – Three discrete-time codebook waveforms (respectively blue, red and green dots) of
duration 5 ms and consisting of 10 harmonics at frequencies 600 Hz, 800 Hz, ..., 2400 Hz, with a
200 Hz step.

The symbol structure is equivalent to the discrete-time base-band representation of 4PSK-
OFDM modulation [Nee and Prasad, 2000]. Therefore, the received symbols can be processed in
a similar manner using subband de-multiplexing. Let C̃ = {C̃k | 0 ≤ k < K} be the sequence
of PSK symbols obtained from some received codebook symbol. Assuming a typical AWGN
(Additive White Gaussian Noise) channel, the maximum likelihood OFDM symbol detection can
be expressed by the L2 norm minimization in the complex plane [Schulze and Lüders, 2005]:
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m̃ = arg min
m

K−1∑
k=0

∣∣∣C̃k −A exp (j2πφm,k/4)
∣∣∣2 . (3.6)

However, the experiments in Section 3.3.1 indicated that compression by the selected LPC coders
causes group delay in the processed signal and alters each harmonic with a distortion of different
variance. The estimated phase shift ϕ̂k and the variance of distortion σ̂2

k respective to each harmo-
nic can be computed using a training sequence and the following estimators for sample mean and
sample variance [Witte and Witte, 2017]:

µ̂k = |µ̂k| exp
(
jϕ̂k

)
= 1

L

L−1∑
ℓ=0

C̃mℓ,k exp(−j2πφmℓ,k/4), (3.7)

σ̂2
k = 1

L− 1

L−1∑
ℓ=0

∣∣∣C̃mℓ,k exp(−j2πφmℓ,k/4)− µ̂k

∣∣∣2 , (3.8)

where C̃mℓ
= {C̃mℓ,k | 0 ≤ k < K} denotes the ℓ − th sequence of PSK symbols measured at

the reception side and Φmℓ
= {2πφmℓ,k/4 | 0 ≤ k < K, φmℓ,k ∈ Z4} denotes the initial phases

of the corresponding codebook symbols in the training sequence.
With the estimated ϕ̂k and σ̂2

k, one may apply the phase shift compensation and spectral weigh-
ting of distortion in the demodulation rule (3.6):

m̃ = arg min
m

K−1∑
k=0

∣∣∣C̃k exp(−jϕ̂k)−A exp (j2πφm,k/4)
∣∣∣2 /σ̂2

k. (3.9)

Finally, rewriting (3.9) and removing the constant terms gives a more convenient demodulation
rule, which is maximizing the real part of a complex dot product [Schulze and Lüders, 2005]:

m̃ = arg max
m
ℜ
(

K−1∑
k=0

C̃k ·
A

σ̂2
k

exp
(
−j2πφm,k/4− jϕ̂k

))
. (3.10)

In contrast to time-domain matched-filtering, the proposed demodulation rule enables phase
and variance correction in the channel distortion. Secondly, it becomes more efficient when the
codebook size grows. Instead of performing M matched-filtering operations on a symbol of length
N , this demodulator needs to compute the in-phase/quadrature (I/Q) representations of K < N
PSK symbols and to correlate them with M different phase sequences. As an example, given the
triple (K, M, N) = (8, 256, 40), matched filtering in the time domain requires at least 256 · 40 =
10240 real-value multiplications. On the other hand, demodulation using Equation 3.10 involves
computing the complex PSK symbols (2 · 8 · 40 = 640 real-value multiplications) and comparing
the obtained sequence with all phase combinations in the codebook (8 · 256 = 2048 complex
multiplications, or at least 4096 real-value multiplications).

Despite the computational improvement, the codebook’s preferable size ranges between 64
and 256 elements and should not overreach 4096 elements. These values would make the real-
time demodulation computationally practical on portable devices, especially if the codebook has
a symmetric structure that enables further computational optimizations.

Another factor in the process of selecting the codebook size is the transmission bitrate. Full
4PSK-OFDM modulation offers transmission up to 2K = log2(4K) information bits per symbol.
However, the modulation is susceptible to excessive distortion or attenuation of some harmonics in
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spectrally selective voice channels. Instead, it is advisable to choose only a subset of all possible
OFDM phase combinations to enlarge the minimum distance between symbols. This approach
makes a transmission over voice channels more robust to spectrally selective distortion, as a large
distortion of some harmonics would be compensated by a moderate distortion of the others. On
the other hand, smaller modulation order M < 4K decreases the bitrate.

3.4.1 Codebook design

Construction of a suitable DoV codebook relies on finding (or training) a subset of harmonic
symbols with a large minimum distance. However, this task becomes challenging as the number
of symbol combinations increases. This subsection gives a proposition of a suboptimal codebook
design method, which produces a set of harmonic waveforms sufficiently different from each other.

For x1, x2 ∈ CK , let dE(x1, x2) be the Euclidean metric over the complex space and for
y1, y2 ∈ ZK

4 , let dL(y1, y2) be the Lee metric over ZK
4 :

dL(y1, y2) =
K−1∑
k=0

min(|y1,k − y2,k|, 4− |y1,k − y2,k|).

In addition, let us define the bijective function f : CK → ZK
4 which takes the phase indices φm,k

of every 4-PSK sequence Cm = {A · exp(j2πφm,k/4) | 0 ≤ k < K, φm,k ∈ Z4}, and maps to
a quaternary codeword f(Cm) = {φm,k | 0 ≤ k < K} over ZK

4 . For any two 4-PSK sequences
Cm1 and Cm2 , we get an isometric property:

2A2dL(f(Cm1), f(Cm2)) = d2
E(Cm1 , Cm2).

It can be noticed that the same relation holds for the minimum distance between all PSK
sequences in the OFDM codebook and elements of the associated quaternary codewords. The
selection of the most distinct OFDM symbols could be thus replaced by the construction of a
quaternary code C ⊂ ZK

4 (not necessarily a subgroup), that maximizes the minimum Lee distance.
In the perspective of non-binary codes with a defined minimum distance, these OFDM sym-

bols can be seen as error correcting codes encoded in the spectral domain [Wilkinson and Jones,
1995]. In consequence, quaternary codes provide a new degree of freedom in the DoV codebook
design. By some sensible manipulation of the number of harmonics K, the symbol duration N , and
the minimum distance between codebook symbols d, it is possible to find a codebook providing
the required bitrate and maintaining sufficient robustness to distortion. Moreover, the codebook
generation is computationally constrained mostly by finding quaternary codes, which is a much
faster process compared to training a full codebook of waveforms. Finally, quaternary codes can
be reused to produce waveforms of different duration and harmonic frequencies. It is also worth
noticing that the above motivation for exploiting non-binary codes is slightly different from other
works focusing mainly on reducing the peak-to-mean energy ratio of the OFDM signal [Davis and
Jedwab, 1999, Chen and Liang, 2007, Ginige et al., 2001, Hisojo et al., 2014].

Due to some rotational symmetries of quaternary codes, there is no unique codebook with a
largest minimum distance. It gives more flexibility in the fine-tuning of the codes to make them
more suitable in real operation. It is advisable to select a codebook with a possibly uniform dis-
tribution of phase values and remove symbols with the highest maximum amplitude. Table 3.1
presents the minimum distance of several quaternary codes found by a greedy algorithm coined
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CodebookSearch. The subroutine ChooseInitial inserts a random or some pre-defined initial co-
deword into the codebook, while the subroutine SelectCodeword iteratively selects a codeword
to remain within the uniform distribution of phase values in the expanded set.

To improve the computational demodulation efficiency, one may exploit the reflection sym-
metry of the codebook produced by the algorithm. Since for any 0 ≤ 2m < M we have
s2m = −s2m+1, it is sufficient to correlate the received PSK sequence only with codebook sym-
bols having the even indices and then to check the sign of computation.

Table 3.1 – Minimum Lee distance of additive quaternary codes of length n = 7, 8, 9 and 10,
found by Algorithm 1. Parameter k denotes the number of (quaternary) information bits of the
code. From the perspective of OFDM symbols, value n is related to the cardinality of harmonics,
while k describes the codebook size equal to 4k.

n \ k 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
7 6 6 4 4 3 3 2 2 2 1 1 - -
8 8 8 6 6 4 4 4 4 2 2 2 2 1
9 8 8 6 6 5 4 4 4 3 2 2 2 1
10 10 9 7 6 6 5 5 4 4 3 3 2 2

Algorithm 1: CodebookSearch(C, M )
Data: the set of quaternary codewords C, an even size of codebook M ;
Result: a set Cb of M quaternary codes ;
Cb←− ∅;
// select the first codeword (random or pre-defined)
c0 ←− ChooseInitial(C);
Cb←− Cb ∪ {c0,−c0};
for i← 1 to ⌊M/2⌋ − 1 do

// select codewords in C with
// a maximum Lee distance from Cb
S←− MaxLeeDistance(C, Cb);
// select a codeword from S respective
// to uniform distribution
c2i ←− ChooseCodeword(S, Cb);
Cb←− Cb ∪ {c2i,−c2i};

end

3.5 Experiments

This section presents the performance results of the DoV scheme described in Section 3.4. Si-
mulations are followed by experimental tests over 3G calls (based on AMR) and selected VoIP
applications (Skype, WhatsApp, and Signal exploiting Opus-Silk and FaceTime using AAC-LD).
Examples of some DoV signals recorded during tests are available online. 1

1. https://github.com/PiotrKrasnowski/Data_over_Voice

https://github.com/PiotrKrasnowski/Data_over_Voice
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3.5.1 Channel estimation

Efficient detection of received DoV symbols, described by Equation 3.10 in Section 3.3, requires
voice channel characterization using the training sequence. Intuitively, the larger number of sym-
bols in the sequence, the more accurate is the estimation. We estimated the standard error SE of
the phase shift ϕ̂k(t) and the variance of distortion σ̂2

k(t) as a function of training duration t, using
Monte Carlo simulations and the following formulas:

ŜE
2
ϕ̂k(t) = 1

L

L∑
ℓ=1

(
ϕ̂k,ℓ(t)− ϕ̄k

)2
, (3.11)

ŜE
2
σ̂2

k
(t)/σ̄2

k
= 1

L

L∑
ℓ=1

(
σ̂2

k,ℓ(t)− σ̄2
k

)2
/σ̄2

k, (3.12)

where L is the number of Monte Carlo runs, ϕ̂k,ℓ(t) and σ̂2
k,ℓ(t) denote respectively the estimated

phase shifts and the variances of distortion in the ℓ− th Monte Carlo run, and the reference values
ϕ̄k and σ̄2

k were obtained from a sequence of 50000 DoV symbols (250 seconds of a signal).
Figure 3.10 depicts the maximum standard error of ϕ̂k(t) and σ̂2

k(t)/σ̄2
k taken over all harmonics k

and for every t between 0.5 and 2.5 seconds with a 0.05 second step. It can be observed that 2
seconds of training period should give a sufficiently accurate channel characterization.
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0.5 1 1.5 2 2.5

0.05

0.1

0.15

0.2

0.25

0.3

training period duration (s)

e
rr
o
r
(u

n
it
le
ss
)

AMR

SPEEX

SILK

(b) Standard error of variance estimation.

Figure 3.10 – Estimated standard error of the phase-shift ϕ̂k and the normalized variance σ̂2
k/σ̄2

k

estimators of distortion introduced by a selection of coders. The graphs present the maximum
standard error over all harmonics k, and for every t between 0.5 and 2.5 seconds with a 0.05
second step. Results obtained based on 1000 Monte Carlo runs. The reference values ϕ̄k and σ̄2

k

were computed from a sample of 50000 symbols. The DoV signal consisted of 8 harmonics at
frequencies 400 Hz, 800 Hz, ..., 3200 Hz with a modulation rate of 200 baud.

3.5.2 Simulations

The symbol error rate primarily depends on the distortion variance and the minimum distance
between codebook symbols. For example, it can be noticed in Figure 3.11(a) that compressing
by AMR leads to significantly lower error rates when compared to compression using the Silk
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codec. This result agrees with the experimental outcomes shown in Figure 3.5 in Section 3.3.
Nevertheless, when the voice channel’s capacity goes up, the amount of distortion, and thus the
error rate gradually decreases, as indicated by Figure 3.11(b).

The characteristic staircase shape of the graphs in Figures 3.11(a) and 3.11(b) corresponds
to the codebook minimum distance d in function of the codebook size (ref. Table 3.1). Thus, the
symbol error rates obtained can be viewed as the approximated probability of the signal distortion
exceeding the distance d/2. Consequently, it is generally advantageous to design the codebook
with a larger number of orthogonal harmonics, leading to increased minimum distance and impro-
ved robustness.

Despite its simplicity, the presented scheme suffers from the large size of the codebooks used,
especially at higher bitrates. The exponentially growing number of correlations becomes a major
practical limitation for real-time signal demodulation. The problem can be tackled by scaling down
the symbol duration at the expense of higher relative distortion and a smaller number of orthogonal
frequency slots. As shown by Figure 3.11(c), a modulation based on smaller codebooks of shorter
symbols provides similar performance at a much lower computational cost.

3.5.3 Real-world tests

The DoV technique has been tested over a real voice channel between mobile phones, using
pre-computed DoV signals. The selected phones for experiments were two iPhones 6 running
iOS 12 and a Huawei P8 Lite running Android 8, each registered to a different major French
mobile network operator. The DoV performance over 3G calls is displayed in Table 3.2, and the
performance over VoIP calls using 4G wireless network is shown in Table 3.3. The duration of the
training period was extended to 4 seconds to ensure the reliability of the experiments.

Table 3.2 – Symbol error rate of DoV signal over 3G call with and without channel estimation.
10 harmonics, symbol duration 5 ms

bitrate 4 s training period no training
1.0 kbps < 1.0 · 10−4 < 1.0 · 10−4

1.2 kbps < 1.0 · 10−4 < 1.0 · 10−4

1.4 kbps 1.2 · 10−4 2.9 · 10−4

1.6 kbps 2.6 · 10−4 4.8 · 10−4

1.8 kbps 6.0 · 10−4 1.5 · 10−3

2.0 kbps 1.2 · 10−3 2.6 · 10−3

2.2 kbps 9.4 · 10−3 1.4 · 10−2

2.4 kbps 1.6 · 10−2 2.2 · 10−2

8 harmonics, symbol duration 2.5 ms
bitrate 4 s training period no training

1.2 kbps < 1.0 · 10−3 < 1.0 · 10−3

1.6 kbps < 1.0 · 10−3 1.3 · 10−3

2.0 kbps 1.2 · 10−3 3.5 · 10−3

2.4 kbps 1.3 · 10−2 2.6 · 10−2

2.8 kbps 3.4 · 10−2 6.6 · 10−2

3.2 kbps 1.0 · 10−1 1.3 · 10−1

3.6 kbps 1.2 · 10−1 1.9 · 10−1

4.0 kbps 2.0 · 10−1 2.6 · 10−1

Table 3.3 – Symbol error rate of DoV signal over VoIP.
8 harmonics, symbol duration 2.5 ms, 4 s training period

bitrate Face Time Skype Signal Messenger WhatsApp
4.0 kbps < 1.0 · 10−4 < 1.0 · 10−4 1.0 · 10−4 9.6 · 10−4

4.8 kbps < 1.0 · 10−4 1.0 · 10−4 9.3 · 10−4 5.1 · 10−3

5.6 kbps < 1.0 · 10−4 1.2 · 10−4 4.4 · 10−3 1.7 · 10−2

6.4 kbps 6.7 · 10−4 3.0 · 10−3 6.2 · 10−2 8.6 · 10−2
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Figure 3.11 – Symbol error rate of a DoV signal compressed by AMR, Speex and Opus-Silk. To
ensure reliability of the simulations, duration of the training period was extended to 4 seconds.
If not indicated otherwise, symbol rate equals 200 baud. DoV signals consisted of 107 symbols
produced according to an output of a built-in pseudo-random generator with a pre-defined seed.
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In the case of the 3G connection, the overall symbol error rates given in Table 3.2 are higher
compared to the simulation results presented in Figure 3.11. Additional signal distortion is possibly
caused by several signal processing stages in the phones and also by multiple voice compression in
the network [Katugampala et al., 2003]. Nevertheless, the DoV signal based on faster modulation
and smaller codebook sizes again demonstrated lower error rates. Finally, the results emphasize
the importance of voice channel estimation, which significantly improves the symbol error rate.
Figure 3.12 displays the small fragment of the DoV signal sent over the 3G channel.

Contrary to 3G, VoIP enables very high DoV bitrates, up to full OFDM narrowband trans-
mission at 6.4 kbps. The improved results provided in Table 3.3 are achieved due to mild signal
distortion given by high throughput and network stability. However, since VoIP is a packet-based
system without any guarantee of Quality of Service (QoS), short interruptions in the network
connection may cause many packet dropouts. The negative impact of dropouts is typically mitiga-
ted by the re-synthesis of lost frames by VoIP application, leading to non-recoverable damages to
the DoV signal and hindering the system’s re-synchronization.

0 2.5 5 7.5 10 12.5 15 17.5 20
−214

0

214

time (ms)

Figure 3.12 – DoV signal at the bitrate 2.8 kbps, before (black line) and after (red line) transmission
over the 3G network. The fragment displays eight consecutive DoV symbols of duration 2.5 ms
consisting of 8 harmonics at frequencies 400 Hz, 800 Hz, ..., 3200 Hz, with a 400 Hz step.

3.6 Secure voice communication

This section provides a detailed proposition of a scheme for secure voice communication over 3G
and VoIP, using small portable devices with limited battery capacity. The system has been suc-
cessfully tested in a controlled, real-world environment and with pre-computed DoV signals. The
performance results are followed by a short discussion on security and computational complexity.

3.6.1 Communication system

Figure 3.13 presents a simplified diagram of a system for secure voice communication over a voice
channel, which transforms consecutive portions of speech into DoV frames of the same duration.
The scheme substantially resembles a classical digital communication system: it consists of speech
encoding, followed by encryption, error correction, and data modulation blocks. Although the
input and output signals of the processing chain are analog, all internal processing is performed
digitally.



54 CHAPTER 3 — Data transmission over voice channels

Figure 3.13 – Encrypted speech over voice channel scheme.

The system settings should be a trade-off between operational constraints (restricted band-
width, real-time processing, synchronization) and the desired security level against eavesdroppers
and active attackers from within the network. Depending on the voice channel type, two modes of
operation may be considered: a low mode designed for 3G cellular calls and a high mode for VoIP.
The system parameters selected in the following experiments are presented in Table 3.4 and are
used only for illustration.

Table 3.4 – Selected parameters of the secure voice communication system.
version: low mode ( 3G ) high mode ( VoIP )
DoV frame
codebook size: 64 4096
DoV symbol order: 6 bits 12 bits
modulation rate: 400 baud 400 baud
bitrate: 2400 bps 4800 bps
frame duration: 80 ms 60 ms
frame length: 32 symbols / 192 bits 24 symbols / 288 bits
Reed-Solomon coding
RS symbol order: 6 bits 6 bits
message length: 20 symbols / 120 bits 28 symbols / 168 bits
· encrypted speech: 96 bits 144 bits
· frame counter: 16 bits 16 bits
· control checksum: 8 bits 8 bits
code length: 28 symbols / 168 bits 40 symbols / 240 bits
redundancy: 8 symbols / 48 bits 12 symbols / 72 bits
Voice enciphering AES 256 (CTR mode) AES 256 (CTR mode)
Voice compression Codec2 1200 bps Codec2 2400 bps

The processing chain starts with low-bitrate speech compression. In this work, voice is en-
coded by Codec2, an open-source algorithm developed by Rowe 2 and J.-M. Valin, which offers
speech compression down to 450 bps [Erhardt et al., 2019]. In the next step, the encoded voice
frames are enciphered by AES in the counter mode of operation and with a secret key of 256 bits
with a random initial value (IV).

2. https://rowetel.com

https://rowetel.com
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The encrypted binary stream is protected against channel errors by shortened Reed-Solomon
(RS) codes with erasures [Lin and Costello, 2001, Neubauer et al., 2007] and 6-bit symbols. The
error correction capabilities of RS codes depend only on the redundancy length, which is not the
case for Turbo and LDPC codes [Tahir et al., 2017]. Moreover, non-binary symbol processing of
RS codewords seems suitable for symbol-to-symbol demodulation of the DoV signal. In particular,
one or more RS symbols can be represented by a single DoV symbol.

Erasure decoding improves correction capabilities of RS codes, provided that the localization
of errors are known. The demodulator may try to guess the erroneous symbols, using a straightfor-
ward metric that considers symbol energy and its distance to the closest codebook symbol. Thus,
when the first decoding attempt fails, the decoder may reiterate decoding with new estimated era-
sure positions until the 8-bit control checksum (8-CRC) matches.

Table 3.5 – Performance of encrypted voice transmission over cellular voice channels and VoIP.
3G Face Time Skype Signal Messenger WhatsApp

effective BER: 3.7 · 10−3 < 1.0 · 10−4 < 1.0 · 10−4 < 1.0 · 10−4 7.8 · 10−4

effective FER: 1.9 · 10−2 < 1.0 · 10−3 < 1.0 · 10−3 < 1.0 · 10−3 2.1 · 10−3

In the proposed scheme, each RS codeword is directly encoded into one DoV frame, as des-
cribed in Figure 3.14. A constant header and a counter (CTR) enable decoding and decryption of
DoV frames independently from each other, simplifying the re-synchronization in the presence
of signal dropouts. Extensive experiments have shown that a 10-ms header is usually sufficiently
long to keep signal synchronization or detect a DoV frame after signal restoration. In addition, the
16-bit counter permits re-synchronization after more than one hour of lost connection.

The duration of a DoV frame is equal to the portion of speech encoded by this frame, which is
a valid requirement for real-time communication. Selected voice compression rates, 1.2 kbps, and
2.4 kbps depending on the mode, are low enough to append error correction redundancy at the end
of each DoV frame.

The system was tested over cellular and VoIP calls. Table 3.5 presents the decoding results of
several minutes of speech recording sent through using the 4G mobile data connectivity between
two iPhones 6 registered to different network operators. The effective bit error rates (BER) and
frame error rates (FER) take into account errors due to system de-synchronizations and dropouts.

Figure 3.15 shows the consecutive waveforms of a signal processed by a 3G network. The
initial speech waveform presented in Figure 3.15(a) is compressed, encrypted, and encoded into
the DoV signal of equal duration in Figure 3.15(b). The received signal displayed in Figure 3.15(c)
is strongly attenuated after less than two seconds of transmission, classified by the Voice Activity
Detector (VAD) as non-speech-like. However, correct decoding is still possible as long as the
harmonic structure of the signal is preserved, as shown in Figure 3.15(d).

The distortion of the received signal varies depending on the network type and the phones used
for communication. To counteract the blockage of stationary signals by VAD and Noise Suppres-
sion, several authors suggest to alternate two DoV codebooks defined over two non-overlapping
bandwidths [Shahbazi et al., 2010,Sapozhnykov and Fienberg, 2012]. This work proposes another
complementary technique: periodic silence insertion in place of some DoV frames, as depicted in
Figure 3.16. It was observed that depending on the chosen rate of silence insertion and the type
of connection, these silences significantly postpone or even prevent signal suppression. On the
reception side, these inserted silences can be classified as lost frames and re-synthesized.
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Figure 3.14 – DoV frame structure in a low (up) and a high (bottom) mode of operation. The
numbers indicate the lengths of frame sections, given as a cardinality of DoV symbols. In the high
mode, one DoV symbol represents two RS symbols.
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Figure 3.15 – Consecutive stages of the signal in secure voice communication over a 3G call.
From top to bottom: the initial speech, the sent DoV signal, the received DoV signal and the re-
synthesized speech. The received signal was fully decodable despite strong signal attenuation.
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Figure 3.16 – Comparison of the received DoV signal in a 3G call (top) without and (bottom) with
silence insertion every 16th frame. Depending on the connection type and the silence insertion
rate, this technique may postpone or prevent signal suppression.

3.6.2 Security discussion

Introducing a dedicated system for voice communication is a response to an increased risk of
being intercepted. Thus, a cryptographic scheme should reflect higher requirements for secrecy
and authentication. A major risk is the recording and off-line cryptanalysis of the network traffic
by passive eavesdroppers. Securing the communication against eavesdroppers is especially im-
portant because the encrypted and non-speech signal can be easily detected by some advanced
Data Leakage Prevention (DLP) and Content Monitoring and Filtering (CMF) systems protecting
against unauthorized data extrusion [Chae et al., 2015, Hauer, 2015, Lee et al., 2017]. Active at-
tackers controlling the network are more likely to block or distort the fragile DoV signal, which
is technically very simple. However, a malicious attacker who can synthesize a compatible DoV
signal in real-time may modify the signal or insert its own.

The chosen AES cipher in the counter mode of operation, if implemented correctly, is believed
to provide security against passive eavesdroppers [Lipmaa et al., 2000, Jonsson, 2003]. On the
other hand, enciphering in counter mode does not guarantee data integrity [Katz and Lindell,
2015], giving some space for adversarial manipulations. Therefore, the common practice is to
combine the AES in counter mode with a cryptographic message authentication function [Housley,
2004]. Unfortunately, due to severe bandwidth limitations appending the authentication check is
not viable. Instead, it would be possible to randomly shuffle the positions of encrypted bits within
one DoV frame [Morris et al., 2009,Stefanov and Shi, 2012]. The motivation for this is to prevent
malicious attackers from intentional modifications of the transmitted content. While still capable
of replacing several DoV symbols, the attacker should not benefit from distorting the transmitted
signals.

Finally, it is assumed that both users share a common secret cryptographic key used for encryp-
tion. Secure key exchange can become challenging when the voice channel is the only available
communication channel. With decentralized implementations of the proposed system, there would
be no practical possibility to add the Trusted Third Party for user’s authentication. A few proto-
cols overcome this limitation by using vocal verification [Pasini and Vaudenay, 2006,Callas et al.,
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2011,Krasnowski et al., 2020]. In such a scenario, users compare freshly generated random strings
vocally while challenging another speaker’s voice profile.

3.6.3 Computational complexity

The goal of real-time operation on small portable devices puts a big emphasis on computational
optimization of the proposed system. It can be noticed that PSK-OFDM modulation [3GPP, 2020],
AES-CTR encryption [Housley, 2004, Park et al., 2011], Reed-Solomon error correction [Biard
and Noguet, 2008,3GPP, 2017] and the speech encoding [Wisayataksin, 2019] algorithms mentio-
ned in this work have been already widely adopted in wireless communication with mobile phones
or in the computationally constrained environment, including real-time applications. However, the
presented system was implemented in GNU Octave environment, 3 serving as a proof-of-concept
only. There is still considerable work to be done to efficiently integrate all these elements into a
single system operating on a device with limited resources, like mid-range smartphones.

3.7 Summary

This chapter has detailed a new and versatile Data over Voice technique for secure voice commu-
nications over LPC-based voice channels, like cellular networks and VoIP. Based on codebooks
with harmonic symbols, the proposed solution is well-grounded on the fundamental principles of
LPC coding.

A thorough analysis of OFDM signals compressed by some prominent voice coders revea-
led that the distortion is statistically close to a symmetric bivariate Gaussian distribution over the
complex phase-amplitude plane. However, this distortion is not uniformly distributed in the spec-
tral domain. Thus, we proposed an optimized demodulation metric based on spectrally weighted
Euclidean distance with phase shift correction.

The tedious design process of DoV codebooks has been considerably simplified by using qua-
ternary error correction codes. With OFDM symbols being treated as codes over a quaternary ring,
codebook construction reduces to finding a set of quaternary codes that maximizes the minimum
Lee distance.

The performance of our DoV technique has been evaluated through simulations and real-world
tests over real voice connections between two mobile phones. A bitrate of 2.4 kbps over 3G call
and 6.4 kbps over VoIP have been achieved with acceptably low symbol error rates. These tests
highlight the need to properly characterize the channel distortion before transmission properly.

Finally, the work described a scheme for secure voice communications over voice channels in
high and low bitrate modes of operation. The system has been practically validated for real-time
voice transmission over cellular networks and VoIP with small effective bit error rates. To mitigate
the negative impact of VAD, we also proposed a new method based on the insertion of repetitive
silences.

The promising results presented in this work suggest some further investigation of the pro-
posed DoV technique. A big emphasis has to be put on signal synchronization on the reception
side and reducing the computational cost of signal demodulation. Additionally, sensible code-
book structuring, combined with the exploitation of phase symmetries, may significantly lower
the number of correlations in a demodulator.

3. https://www.gnu.org/software/octave/

https://www.gnu.org/software/octave/
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Chapter 4 introduces a new enciphering scheme adapted to communication over channels with
errors. In contrast to the DoV technique described in this section, the scheme is tolerant to trans-
mission error. The method enciphers spherical data using random rotations from a commutative
group of orthogonal matrices and is particularly suitable for transmitting perceptually-oriented
data, such as multidimensional speech timbre.





CHAPTER 4
Distortion-tolerant

encryption of vectors on
N-spheres

This chapter presents a distortion-tolerant encryption scheme for scrambling unit vec-
tors on hyperspheres, using rotations from a group of orthogonal matrices, and a non-
binary pseudo-random number generator (PRNG) with a fresh secret seed. The method
gives indistinguishable encryptions in the presence of an eavesdropper and is robust
against channel errors. This makes the encryption scheme suitable in secure voice com-
munications over voice channels, for example by scrambling a multi-dimensional vocal
timbre representation.
The technique has been successfully tested on a toy example. In the test, we scrambled
the colors in an image by performing pseudo-random rotations, and later corrupted the
enciphered data with Gaussian noise. The descrambled image exhibited a gracefully pro-
gressive quality degradation depending on the distortion intensity, while the informative
content of the image remained well preserved.
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Glossary

List of abbreviations
CVP Closest Vector Problem
PPT Probabilistic Polynomial Time
PRNG Pseudo-Random Number Generator
RMSE Root Mean Squared Error
SNR Signal-to-Noise Ratio

Notation - lattices and spherical codes

Λ, Λα, Λβ lattices
Sn unit sphere in Rn+1 centered at the origin
C spherical commutative group code
σ initial codeword of the code C
G commutative group of orthogonal matrices
Gi orthogonal matrix i from G
Tξ flat torus in R2n associated with a positive unit vector ξ ∈ Rn

Φξ(•) torus mapping Rn → R2n associated with ξ ∈ Rn (see Section 4.3.2)
γn(x) function Sn → Rn which outputs angular coordinates of x

Notation - encryption scheme

λ security parameter
s secret seed
r pseudo-random sequence
x, y initial and decoded vectors on Sn

X, Y sequences of initial and decoded vectors on Sn

p, u encoded and enciphered codewords in C
P, U sequences of encoded and enciphered codewords in C
v, q received and deciphered vectors on the flat torus Tξ

V, Q sequences of received and deciphered vectors on Tξ

Packing and covering radii of some selected lattices

lattice packing density covering density
cubic lattice Zn 0.5

√
n/2

checkerboard lattice Dn 1/
√

2 1 (n = 3) or
√

n/2 ( n > 3 )
Gosset lattice Γ8 1/

√
2 1
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4.1 Motivation

The investigation on speech coding and voice channels carried in Chapter 2 and Chapter 3 revealed
that achieving error-less data transmission over real voice channels was very unlikely. This pessi-
mistic outcome undermines the usefulness of many prominent cryptographic algorithms in speech
encryption. The reason is their non-compliance to transmission error that prevents adversarial data
manipulation and guarantees exact message decryption. In contrast, successful operation of voice
channels equipped with speech coders proves that a good enough approximation of vocal parame-
ters is sufficient to reconstruct intelligible speech. Consequently, some imperfect data decryption
in secure voice communication is acceptable if the lower decryption accuracy is somehow com-
pensated by the higher robustness against errors.

Designing a secure cryptographic scheme that operates correctly despite encrypted data dis-
tortion could be achieved using unconventional enciphering techniques. The desired property
of such a scheme would be some kind of resilience of ciphertexts that would increase the ro-
bustness to distortion without compromising the secrecy of encrypted data. A similar problem
confronted providers of cloud-based solutions who want to extract useful statistical information
from the stored data without violating data privacy. The proposed remedies were new encrypting
techniques, such as homomorphic [Gentry, 2009], order-preserving [Agrawal et al., 2004] and
distance-preserving [Tex et al., 2018] encryptions.

Intuitively speaking, an encryption scheme is distance-preserving when the distance between
any two pieces of encrypted data is the same after decryption. The technique has been applied in
distance-based clustering on encrypted data [Yin et al., 2018] and distance calculation on spherical
geophysical coordinates [Šeděnka and Gasti, 2014, Zhou et al., 2018]. However, the distance-
preserving property is also useful for protecting audio media streams in real-time applications. For
example, when the enciphered vocal parameters are degraded by some small channel error, the
original signal could still be approximately decrypted without disrupting the communication.

Applying distance-preserving encryption technique directly on speech parameters is far from
being straightforward. Naively, we could scramble three perceptual speech components: pitch,
loudness, and timbre. Pitch and loudness are associated with fundamental frequency and signal
energy, both of them scalars. However, timbre is a multi-dimensional signal loosely related to
spectral envelope, and with many possible representations. For instance, in the speech recogni-
tion domain a spectral envelope is usually encoded by 13-19 Mel-Frequency Cepstral Coeffi-
cients (MFCC) [Davis and Mermelstein, 1980, Benesty et al., 2008, Chap. 9, Rabiner and Schafer,
2011, Chap. 8].

In this chapter, we propose an encryption scheme that is robust against channel errors, decrypts
approximately, and is suitable for enciphering the spectral envelopes of speech signals (how it is
done will be detailed in Chapter 5). The technique scrambles unit vectors on a hypersphere using a
secure Pseudo-Random Number Generator (PRNG), a commutative (abelian) group of orthogonal
matrices, and a spherical group code of equal footing. Despite the fact that spherical group codes
where known at least since the late 60s from the seminal work of Slepian [Slepian, 1968], useful li-
terature on using these codes for enciphering remains scarce. The encryption scheme is thoroughly
detailed, with an emphasis on the security aspects and robustness to channel error. The scheme is
proven to produce indistinguishable encryptions in the presence of an eavesdropper when the en-
ciphering algorithm takes as input a secure pseudo-random sequence. Furthermore, the chapter
introduces an extension of the notion of distance-preserving encryption, named distortion-tolerant
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encryption, that is better suited for describing the robustness of encryption schemes against chan-
nel errors.

This chapter is organized as follows. Section 4.2 reviews some basic lattice theory and details
some important lattices. Section 4.3 describes spherical commutative group codes and shows the
explicit construction of spherical codes from pairs of nested lattices, as described in [Costa et al.,
2017]. Section 4.4 recalls the fundamental definitions of indistinguishability of encryptions in the
presence of an eavesdropper and of non-binary pseudo-random number generators. Section 4.5
details the notion of distortion-tolerant encryption and briefly describes its fundamental properties.
Section 4.6 presents the distortion-tolerant encryption scheme. Section 4.7 provides for illustration
a toy example of distortion-tolerant color scrambling in an image. Section 4.8 summarizes this
work.

4.2 Lattices and lattice packings

This section recalls some basic theory related to lattices and describes some special lattices of
high density and with efficient decoding algorithms. The interested reader may get more details
from [Conway and Sloane, 1999].

4.2.1 Lattices and lattice packings

A lattice in Rn is a subgroup of the additive group Rn that is defined by all integer linear combi-
nations of some independent vectors.

Definition 4.2.1. Let b1, b2, ..., bm be linearly independent vectors in Rn. A lattice Λ with basis
{b1, b2, ..., bm} is defined as the set of all linear combinations of the basis vectors:

Λ = {u1b1 + u2b2 + ... + umbm : u1, ..., um ∈ Z}. (4.1)

A lattice may equivalently be viewed as the set of vector endpoints determined by linear com-
binations of the basis vectors. The number m of independent vectors in the basis is the rank
of Λ. If m = n, the lattice Λ is called full rank. The basis vectors form a generator matrix
B = [b1, b2, ..., bm].

For any lattice Λ, there is an infinite family of bases and their associated generator matrices.
Theorem 4.2.1 describes the relation between all generator matrices spanning Λ.

Theorem 4.2.1. [Costa et al., 2017, Chap. 2] Two matrices B and C generate the same lattice
Λ if and only if there exists a unimodular matrix U (a matrix with integer entries and whose
determinant is either 1 or -1) such that C = BU .

A subset Λ′ ⊂ Λ is said to be a sublattice of the lattice Λ if and only if Λ′ is an additive
subgroup of Λ. Let B and B′ be the respective generator matrices of Λ and Λ′. If Λ′ is full-
rank, there exists a square integer matrix H with a non-zero determinant such that B′ = BH .
Moreover, the matrix H can be decomposed into its Smith normal form H = PDQ where P
and Q are unimodular matrices, and D is a diagonal matrix such that diag(D) = [d1, d2, ..., dn]T ,
di ∈ N and di divides di+1 for i = 1, ..., n− 1 [Cohen, 1993, Sec. 2.4].

Since P and Q−1 are unimodular as in Theorem 4.2.1, the matrix C := BP = [v1, v2, ..., vn]
is a generator of Λ and C ′ := B′Q−1 = [w1, w2, ..., wn] is a generator of Λ′. We obtain C ′ = CD,



66 CHAPTER 4 — Distortion-tolerant encryption of vectors on N-spheres

meaning that the new basis vectors of Λ′ are integer multiples of the new basis vectors of the lattice
Λ: wi = divi for i = 1, ..., n. These new basis representations show that the quotient group Λ/Λ′
is isomorphic to Zdk0

⊕ ... ⊕ Zdn , where dk0 is the first element of diag(D) larger than 1 [Lavor
and Gomes, 2018, p. 108-109].

Every full-rank lattice Λ can be characterized by its volume V(Λ), which is the volume of the
fundamental parallelotope determined by the set of neighbor lattice points. The lattice volume is
independent of the selected generator matrix B and is equal to:

V(Λ) =
√

det(BT B) = |det(B)|. (4.2)

The space containing the lattice points can be decomposed into Voronoi cells [Okabe et al.,
2000]. Let ∥ • ∥ denote some metric in Rn. The Voronoi region associated with a lattice point
x ∈ Λ is the set of points in Rn closer to x than to any other point of lattice Λ with respect to the
chosen metric:

VΛ(x) = {y ∈ Rn : ∥x− y∥ ≤ ∥z− y∥, for all z ∈ Λ}. (4.3)

If ∥ • ∥ is the Euclidean distance measure, we have the volume of the Voronoi cell associated with
0 equal to V(Λ): vol(VΛ(0)) = V(Λ) [Costa et al., 2017, Chap. 2].

Many practical problems in digital coding, computational geometry, and optimization often
summarize to finding a dense sphere packing in a multidimensional Euclidean space, which can
be intuitively understood as distributing some balls of a fixed radius. Some arrangements of balls
can be called ‘densest’ in the space Rn when there exists no other (non-equivalent) arrangement
of balls that occupies a larger portion of that space.

If an arrangement of balls is regular, the center points of the balls form a lattice. Further-
more, the density of the arrangement is independent of the chosen lattice basis, making it a useful
measure for comparing the densities of different lattices.

Definition 4.2.2. Let xmin denote the shortest non-zero vector in Λ and let Bn(r) denote the n-
dimensional ball of radius r around the origin: Bn(r) = {x ∈ Rn : ∥x∥ ≤ r}. The packing
density of Λ is defined as:

∆(Λ) = vol(Bn(ρ))
V(Λ) , (4.4)

where ρ = ∥xmin∥/2 is called the packing radius.

The dual problem to sphere packing is the sphere covering problem, linked to the covering
density of Λ. As opposed to the previous measure, the covering density describes the smallest
volume of balls covering the whole space Rn, in relation to V(Λ). Because the balls may overlap,
the covering density is never smaller than 1.

Definition 4.2.3. The covering density of Λ is defined as:

Θ(Λ) = vol(Bn(µ))
V(Λ) , (4.5)

where the covering radius µ is the smallest positive value such that the union of all the translates
of the ball Bn(µ) by vectors in Λ cover Rn:⋃

x∈Λ
(Bn(µ) + x) = Rn. (4.6)

In the rest of this chapter, if not stated otherwise, ∥ • ∥ will denote the Euclidean norm.
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4.2.2 Special lattices and finding the closest lattice points

Some lattices are characterized by some special structures and high densities which are of interest
in this work. In particular, one of the desired properties is the simplicity of finding the closest
lattice point v to any z ∈ Rn:

v = min
w∈Λ
∥z−w∥ . (4.7)

Given a random lattice and a target vector, the closest vector problem (CVP) is proved to be
NP-hard [Micciancio and Goldwasser, 2012]. For certain classes of lattices, however, there exist
very efficient ways of finding the closest or approximately closest vectors.

The cubic lattice Zn is the lattice with all points being n-tuples of integers. It has the packing
radius ρ = 0.5 and the covering radius µ =

√
n/2. The regular structure of Zn enables a very

efficient procedure for finding closest lattice points. Let g(z) be the function which rounds z ∈ R
to one closest integer. If the result is not unique, g(z) outputs the integer with the smallest absolute
value. Then, for any vector z = [z1, ..., zn]T , the closest vector in Zn is g(z) = [g(z1), ..., g(zn)]T
[Conway and Sloane, 1999, Chap. 4].

The checkerboard lattice Dn is the lattice with elements having integer coordinates summing
up to an even number:

Dn = {[z1, ..., zn]T ∈ Zn : z1 + ... + zn ≡ 0 mod 2}, n ≥ 3 . (4.8)

The packing radius of Dn is ρ = 1/
√

2, and the covering radius is µ = ρ
√

2 (n = 3) or µ =
ρ
√

n/2 ( n > 3 ). The lattice Dn is the densest lattice in dimensions n = 3, 4 and 5.
Due to the explicit relation between point coordinates in Dn, CVP in the Euclidean metric

is nearly as simple as in the cubic lattice Zn [Conway and Sloane, 1982]. Let h(z) be defined
similarly to the function g(z) with the only difference that the component of z farthest from the
integer is rounded the other way (for example, h([0.2, 1.7]) = [0, 1]). Clearly, one of the points
g(z) or h(z) has an even sum of coordinates. Thus, a point belonging to Dn is also the closest
lattice point to z.

The Gosset lattice Γ8 was recently proven to be (up to an isomorphism) the densest lattice in
dimension 8 [Viazovska, 2017]. It is defined as:

Γ8 =
{

z = [z1, ..., z8]T ∈ Z8 ∪ (Z + 1/2)8 :
8∑

i=1
zi ≡ 0 mod 2

}
, (4.9)

and its generator matrix is given by:

B =



2 −1 0 0 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 0 0 1 −1 0 0 1/2
0 0 0 0 1 −1 0 1/2
0 0 0 0 0 1 −1 1/2
0 0 0 0 0 0 1 1/2
0 0 0 0 0 0 0 1/2


.
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The Gosset lattice has packing density ρ = 1/
√

2 and covering density µ = 1. It can be
noticed that Γ8 = D8 ∪ (D8 + 1

2), where (D8 + 1
2) denotes the lattice Dn translated by [1

2 , 1
2 ]T .

This observation is useful in CVP: for any z ∈ R8, the closest vector of Γ8 is one of the four
vectors g(z), h(z), g(z− 1

2) + 1
2 , h(z− 1

2) + 1
2 [Conway and Sloane, 1982].

4.3 Spherical commutative group codes from lattices

In the digital communications domain, spherical codes are used in source and channel coding
[Adoul et al., 1984, Hamkins and Zeger, 2002], coded signal modulation [Burr, 1989] and MIMO
space-time coding [Utkovski and Lindner, 2006]. However, the available literature on exploiting
spherical codes for data scrambling is very scarce if existing. This section describes some sphe-
rical commutative group codes associated with dense lattices that will be the building block of
the presented enciphering scheme. The section starts by recalling the basic definitions and some
theorems related to spherical group codes. The theory linking spherical group codes and lattices
owes a lot to the work of Costa and his research group [Costa et al., 2017].

4.3.1 Spherical commutative group codes

A spherical commutative (abelian) group code on the unit hypersphere Sn−1 ⊂ Rn is a set of unit
vectors closed under matrix multiplication from some orthogonal matrix group G. These spheri-
cal commutative group codes were introduced in [Slepian, 1968] as a new encoding method for
sending information over the Gaussian channel.

Definition 4.3.1. [Slepian, 1968] A spherical commutative group code C of order M is a set of
M unit vectors C = {Gσ : G ∈ G}, where σ lies on the unit hypersphere Sn−1 ⊂ Rn and G is a
finite group of order M of n× n orthogonal matrices.

Commutative spherical group codes are geometrically uniform, i.e., for any u, v ∈ C , there
exists an isometry fu,v such that fu,v(u) = v and fu,v(C ) = C [Forney, 1991]. Moreover, they
have congruent Voronoi regions, the same detection probability in the presence of transmission
noise, and a distribution of codewords invariant to multiplication by matrices from G. Although
spherical commutative group codes do not offer packing densities as high as general spherical
codes, this shortcoming is compensated by their simple structure and the easiness of encoding and
decoding [Costa et al., 2017, p. 81]. Examples 4.3.1 and 4.3.2 in Section 4.3.3 show two instances
of spherical codes.

Every element in G can be uniquely represented as a product of powers of generator matrices
{G1, ..., Gk}, such that Gi ∈ G for i = 1, ..., k, and Gi generate G:

G = {Gw1
1 ·G

w2
2 · ... ·G

wk
k : 0 ≤ wi ≤ di − 1, i = 1, ..., k} .

Furthermore, G is isomorphic to Zd1 ⊕ ...⊕Zdk
where d1 ·d2 · ... ·dk = M and di divides di+1 for

i = 1, ..., k − 1 [Cohen, 1993, Sec. 2.4]. We can thus conveniently index G ∈ G (and Gσ ∈ C )
by a vector [w1, ..., wk]T ∈ Zd1 ⊕ ...⊕ Zdk

.
The elements of G can also be viewed as a composition of rotations and reflections mapping

points on the hypersphere into other codewords in C . It is the consequence of Theorem 4.3.1
which states that we can orthogonally transform G into a new group with rotation and reflection
parts separated.
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Theorem 4.3.1. [Gantmakher, 1959, p. 292] In every finite group G of n×n orthogonal matrices,
every element Gi ∈ G for i = 1, ..., M can be mapped by one and only one real orthogonal
transformation Q into a block-diagonal form:

QGiQ
T =



Rot
(

2πai,1
M

)
0 ... ... 0

0 . . .
...

... Rot
(

2πai,q

M

)

bi,2q+1
...

...
. . . 0

0 ... ... 0 bi,n


where ai,j ∈ {0, ..., M} for j = 1, ..., q and bi,j = ±1 for j = (2q + 1), ..., n and Rot(x) are
2× 2 rotation matrices:

Rot(x) =
[
cos(x) − sin(x)
sin(x) cos(x)

]
.

We say, that G is free from reflection blocks, when 2q = n [Costa et al., 2017, p. 79]. Such a group
of matrices can be transformed into a group that contains only spherical rotations.

4.3.2 Torus mapping

A flat torus mapping makes the link between spherical group codes on the unit sphere in R2n

and lattices in Rn. This connection is used to construct spherical codes from dense lattices with a
simple structure.

For each unit vector [ξ1, ..., ξn]T = ξ ∈ Sn−1 with positive coordinates ξi > 0, and for every
[u1, ..., un]T = u ∈ Rn, let the mapping Φξ : Rn → R2n be defined as:

Φξ(u) = [ξ1 cos(u1/ξ1), ξ1 sin(u1/ξ1), ..., ξn cos(un/ξn), ξn sin(un/ξn)]T . (4.10)

The image of Φξ describes a flat torus Tξ contained on the surface of a unit hypersphere S2n−1 ⊂
R2n. Moreover, the same flat torus can be injectively mapped to a bounded box in Rn, as depicted
in Figure 4.1:

Pξ = {u ∈ Rn : 0 ≤ ui ≤ 2πξi, 1 ≤ i ≤ n}. (4.11)

The whole family of flat tori with ∥ξ∥ = 1 and ξi ≥ 0 foliates the hypersphere S2n−1, meaning
that every point on the sphere belongs to one and only one flat torus [Lawson Jr, 1974,Candel and
Conlon, 2000].

The Euclidean distance between two points on the flat torus associated with the vector ξ =
[ξ1, ..., ξn]T is given by [Torezzan et al., 2013]:

∥Φξ(u)− Φξ(v)∥ = 2

√√√√ n∑
i=1

ξ2
i sin2

(
ui − vi

2ξi

)
, (4.12)

and is bounded by [Torezzan et al., 2015]:

2
π
∥u−v∥ ≤ 2ξmin sin

(∥u− v∥
2ξmin

)
≤ ∥Φξ(u)−Φξ(v)∥ ≤ 2 sin

(∥u− v∥
2

)
≤ ∥u−v∥, (4.13)
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where ξmin = min
1≤i≤n

ξi ̸= 0 and assuming ∥u − v∥ ≤ ξmin. It may be noticed that the distance

∥Φξ(u)− Φξ(v)∥ approaches ∥u− v∥ when ∥u− v∥ tends to 0.

Figure 4.1 – Illustration of a 2-dimensional flat torus Tξ in R4 associated with Φξ: a) the point ξ
on S1, b) the flat surface Pξ of the torus, c) the first folding of Pξ, d) the second folding of Pξ

realizable only in R4. From [Costa et al., 2017].

4.3.3 Spherical commutative group codes from lattices

Figure 4.2 presents a simple example of two nested lattices in R2 associated with a spherical
group code in R4 through a torus mapping. The red dots in the middle of the picture belong to
an orthogonal lattice Λβ = 2πξ1Z × 2πξ2Z, where (ξ1, ξ) = (0.8, 0.6). Since ξ = [ξ1, ξ2]T is
nonnegative with a unit norm, the points of Λβ can be viewed as vertices of frames that are the
pre-images of the flat torus Tξ through the map Φξ.

Besides, the red and black dots combined form another lattice Λα such that Λβ ⊂ Λα. It can
be noticed, that the quotient Λα/Λβ of order 4 can be mapped by Φξ to some spherical code C
on S3 ∈ R4. Moreover, since Λα/Λβ is closed under translation by a single basis vector (the blue
arrow), the code should be closed under an associated rotation on S3. Consequently, the code C
is a commutative group code of order 4 with a single generator matrix.

Figure 4.2 – Division of the 2-dimensional plane into frames associated with the flat torus mapping
Φξ, ξ = [0.8, 0.6]T , and the pair of nested lattices Λβ (red dots) and Λα (black, red, and green
dots) defined over the same plane. The image Φξ(Λα) is a spherical code of order 4 (green dots on
the torus). The blue arrow is a basis vector of the quotient Λα/Λβ , which can be associated with a
basic rotation generating the spherical code on S3.
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As will be detailed in Corollary 4.3.2, there is an isomorphism between some spherical group
codes in even dimensions larger than 2 (hence, C ⊂ R2n, n > 1) and quotients of associated
lattices. Conversely, Corollary 4.3.3 presents an explicit construction of a spherical code from a
pair of nested lattices.

Corollary 4.3.2. [Siqueira and Costa, 2008, p. 113] Let C = Gσ ⊂ R2n be a spherical com-
mutative group code of order M , where G is a group of orthogonal matrices free from reflection
blocks, and σ = [ξ1, 0, ξ2, 0, ..., ξn, 0]T , ξi ≥ 0, is the initial vector with unit norm. Then, the
inverse image of the code Φ−1

ξ (C ) is the full rank lattice Λα generated by the set:

{αi : αi = [2πai,1/M, ..., 2πai,n/M ]T , 0 ≤ ai,j < M, ai,j ∈ Z, j = 1, ..., n, i = 1, ..., M},

where 2πai,j/M come from block-diagonalization of elements in G. The lattice Λα has the sublat-
tice Λβ =

∏n
j=1 2πξjZ with an orthogonal basis, and G is isomorphic to the quotient Λα/Λβ .

Corollary 4.3.3. [Costa et al., 2017, p. 82] Let Λβ ⊂ Λα be a pair of full rank lattices with
generator matrices Aβ = [β1, β2, ..., βn] and Aα, respectively. Moreover, let the basis of Λβ be
orthogonal. There exists an integer matrix H such that Aβ = AαH . Matrix H has a Smith normal
form H = PDQ where P and Q are unimodular matrices and D is a diagonal matrix with
diag(D) = [d1, d2, ..., dn]T , di ∈ N and di divides di+1 for i = 1, ..., n− 1.

Let us define bi = ∥βi∥, b =
√∑n

j=1 ∥βj∥2, ξi = bi/b , ξ = [ξ1, ξ2, ..., ξn]T and the torus

mapping Φξ. Then, the quotient of the normalized nested lattices (2πb−1Λα)/(2πb−1Λβ) is asso-
ciated with a spherical code C ⊂ S2n−1 with the initial vector σ = [ξ1, 0, ξ2, 0, ..., ξn, 0]T , and a
generator group of matrices determined by the Smith normal decomposition of H .

Discussion Corollary 4.3.3 states that for a given pair of nested lattices Λβ ⊂ Λα, Λβ being
orthogonal, and an integer matrix H such that Aβ = AαH , with the Smith normal form
H = PDQ, one can easily get generator matrices of G. Indeed, since P and Q are unimodular,
Bα = AαP = [v1, v2, ..., vn] and Bβ = AβQ−1 = [w1, w2, ..., wn] are also respective generator
matrices of lattices Λα and Λβ . We get Bβ = BαD (wi = divi) and Λα/Λβ

∼= Zdk0
⊕ ... ⊕ Zdn

where dk0 is the first element of Diag(D) larger than 1. Thus, we can associate the quotient Λα/Λβ

with some orthogonal 2n×2n matrix group G ∼= Zdk0
⊕...⊕Zdn of order det (H) = d1 ·d2 ·...·dn.

Furthermore, the basis vectors vk0 , ..., vn can be associated with a direction of rotations. Ho-
wever, these vectors should be expressed in terms of the old orthogonal basis Aβ which determines
the rectangular frame defined as pre-image of the flat torus. As a result, we may express the gene-
rator matrices {G1, G2, ..., Gk} in block-diagonal form:

Gj =


Rot(2πrj+k0,1) 0 ... 0

0 Rot(2πrj+k0,2) ... 0
...

...
. . .

...
0 0 ... Rot(2πrj+k0,n)


2n×2n

where k is the number of elements in Diag(D) larger than 1, k0 = n− k, j = 1, ..., k and rj+k0,i

are elements of the matrix R = A−1
β AαP .

It can be noticed that performing basic rotations on the codewords of C is equivalent to trans-
lating points in the pre-image of the flat torus. Thus, we can impose some design rules that improve
the properties of the constructed spherical code.
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Firstly, from the bounds given by Equation 4.13 we get that for any u, v ∈
(2πb−1Λα)/(2πb−1Λβ) the distance ∥Φξ(u) − Φξ(v)∥ is larger than 2∥u − v∥/π. Conse-
quently, the maximization of the minimum distance between vectors of (2πb−1Λα) results in the
improvement of distance distribution between codewords on the hypersphere S2n−1. In particular,
selecting dense lattices like the checkerboard lattice Dn or the Gosset lattice Γ8 in the construction
will lead to a larger minimum distance between codewords in C .

The distribution of codewords on the hypersphere S2n−1 can be further improved by selecting
a proper vector ξ = [ξ1, ..., ξn]T . Provided that 2ξmin sin(∥u−v∥/(2ξmin)) ≤ ∥Φξ(u)−Φξ(v)∥,
we should maximize the minimum nonnegative component ξmin. This is achieved by taking ξ such
that ξ1 = ξ2 = ... = ξn.

Figure 4.3 – Example of a construction of a spherical code on S3. The red arrows are the basis
vectors of the orthogonal lattice Λβ , whereas the blue arrows are the basis vectors of the lattice Λα

such that Λβ ⊂ Λα. The points in 2π/
√

65Λβ determine the frame associated with the pre-image
of the flat torus mapping Φξ, where ξ = [

√
13/65,

√
52/65]T . The points of Λα can be mapped

to a spherical code of order 13. The code has only one generator matrix, associated with the basis
vector of the quotient Λα/Λβ (the green arrow). Yellow points are the lattice points associated
with the spherical code.

Example 4.3.1 – Let the lattices Λα and Λβ have the following generator matrices:

Aα =
[
2 0
0 1

]
Aβ =

[
2 6
3 −4

]
.

We have Λβ ⊂ Λα and Λβ is orthogonal, as seen in Figure 4.3. The matrix H with the Smith
normal form:

H =
[
1 3
3 −4

]
=
[
1 0
3 −1

] [
1 0
0 13

] [
1 3
0 1

]
.
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Thus, G ∼= Λα/Λβ
∼= Z13 is of order 13 and has one generator matrix. The new basis of Λα is

Bα = AαP with two vectors [2, 3]T and [0,−1]T , where only the second contributes to spherical
rotations in G (it can be verified on the picture, that indeed this vector generates a code of order 13).
Finally, the vector [0,−1]T should be expressed in the basis Aβ , giving a vector [−3/13, 1/13]T .
The 4× 4 generator matrix of the spherical commutative group G is given by:[

Rot(2π(−3/13)) 0
0 Rot(2π(1/13))

]
.

Finally, the initial vector of the spherical code is σ = [
√

13/65, 0,
√

52/65, 0]T .

Example 4.3.2 – Let the lattices Λα = Γ8 and Λβ have the following generator matrices:

Aα =



2 −1 0 0 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 0 0 1 −1 0 0 1/2
0 0 0 0 1 −1 0 1/2
0 0 0 0 0 1 −1 1/2
0 0 0 0 0 0 1 1/2
0 0 0 0 0 0 0 1/2


Aβ =



2k 0 0 0 0 0 0 0
0 2k 0 0 0 0 0 0
0 0 2k 0 0 0 0 0
0 0 0 2k 0 0 0 0
0 0 0 0 2k 0 0 0
0 0 0 0 0 2k 0 0
0 0 0 0 0 0 2k 0
0 0 0 0 0 0 0 2k


,

where k ∈ N. Matrix H , such that Aβ = AαH , is of the form:

H =



k k k k k k k −7k
0 2k 2k 2k 2k 2k 2k −12k
0 0 2k 2k 2k 2k 2k −10k
0 0 0 2k 2k 2k 2k −8k
0 0 0 0 2k 2k 2k −6k
0 0 0 0 0 2k 2k −4k
0 0 0 0 0 0 2k −2k
0 0 0 0 0 0 0 4k


,

and can be decomposed into its Smith normal form H = PDQ:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





k 0 0 0 0 0 0 0
0 2k 0 0 0 0 0 0
0 0 2k 0 0 0 0 0
0 0 0 2k 0 0 0 0
0 0 0 0 2k 0 0 0
0 0 0 0 0 2k 0 0
0 0 0 0 0 0 2k 0
0 0 0 0 0 0 0 4k





1 1 1 1 1 1 1 −7
0 1 1 1 1 1 1 −6
0 0 1 1 1 1 1 −5
0 0 0 1 1 1 1 −4
0 0 0 0 1 1 1 −3
0 0 0 0 0 1 1 −2
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


.

The form of the matrix D indicates that the spherical code is of order M = k(2k)6(4k), and
is isomorphic to Z6

2 ⊕ Z4 when k = 1 or isomorphic to Zk ⊕ Z6
2k ⊕ Z4k when k > 1. From

the Smith normal decomposition we obtain 8 generator matrices (7 when k = 1) generating the
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spherical code C = Gσ ⊂ S15. The columns of the following matrix define angles of rotations in
the generator matrices {G1, G2, ..., G8} of the group G:

2πA−1
β AαP =



2π/k −2π/2k 0 0 0 0 0 2π/4k
0 2π/2k −2π/2k 0 0 0 0 2π/4k
0 0 2π/2k −2π/2k 0 0 0 2π/4k
0 0 0 2π/2k −2π/2k 0 0 2π/4k
0 0 0 0 2π/2k −2π/2k 0 2π/4k
0 0 0 0 0 2π/2k −2π/2k 2π/4k
0 0 0 0 0 0 2π/2k 2π/4k
0 0 0 0 0 0 0 2π/4k


.

The initial vector of the spherical code is σ = [1, 0, ..., 1, 0]T /
√

8 ∈ S15. Finally, the pre-image
of the spherical code Φ−1

ξ (C ) is the scaled Gosset lattice:

2π

2k
√

8
Γ8.

4.4 Asymptotic secrecy of pseudo-random generators

The following definitions recall the fundamental secrecy concepts related to symmetric-key en-
cryption schemes and pseudo-random generators. The theory starts with defining a secret-key
encryption scheme and the notion of perfect secrecy, and is followed by a more realistic approach
when the eavesdropper running in probabilistic polynomial time (PPT) is given some small advan-
tage in breaking the security of the scheme.

Definition 4.4.1. [Katz and Lindell, 2015, §3.2 in Chap. 3] A symmetric encryption scheme is a
tuple of probabilistic polynomial-time algorithms Π = (KeyGen, Enc, Dec) such that:

1. The key-generation algorithm KeyGen takes as input 1λ, and outputs a key k from the
finite key space K. The parameter λ is called a security parameter.

2. The encryption algorithm Enc takes as input a key k ∈ K and a plaintext message m from
the message spaceM, and outputs a ciphertext c from the ciphertext space C.

3. The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext c ∈ C, and
outputs a message m ∈M or an error.

For every security parameter λ, every key k ∈ K and every message m ∈ M it holds that
Deck(Enck(m)) = m. If messages cannot be longer than a fixed and predefined value, we say
that Π is a fixed-length private-key encryption scheme.

In cryptography and security analysis, we often work with probabilities rather than with par-
ticular instantiations. Thus, all the keys k, plaintext messages m, and ciphertexts c are chosen
or computed with some probabilistic distribution. Usually, these distributions are being related to
random variables K,M and C, so that for example Pr(K = k) denotes the probability of selecting
k ∈ K. Additionally, random variables K and M are assumed to be independent.

Definition 4.4.2. [Katz and Lindell, 2015, Chap. 2] An encryption scheme Π = (KeyGen, Enc,
Dec) with a message space M is perfectly secret if for every probability distribution over M,
every message m ∈M, and every ciphertext c ∈ C such that Pr(C = c) > 0, we have:

Pr(M = m | C = c) = Pr(M = m).
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Definition 4.4.2 states that the encryption scheme Π is perfectly secret if no algorithm with
unbounded computational power can get any information about the message m out of the cipher-
text c. In practice, it is more convenient to use the notion of indistinguishability in experiment
called the adversarial indistinguishability challenge. In the experiment, a stateful algorithm A (an
adversary) specifies two arbitrary messages m0, m1 ∈ M, and then is given uniformly at random
one of the ciphertexts Enck(m0), Enck(m1) encrypted with a random key. The adversary’s goal
is to correctly guess if he received the encryption of m0 or m1.

Definition 4.4.3. [Katz and Lindell, 2015, Chap. 3] The adversarial indistinguishability challenge
PrivKeav

A,Π(λ) is defined as:

1. The adversary A is given input 1λ, and he chooses a pair of distinct messages m0, m1 of
equal length.

2. A key k is generated by running KeyGen(1λ), and a bit b ∈ {0, 1} is chosen uniformly at
random. Then, the computed challenge ciphertext c = Enck(mb) is given to A.

3. A outputs bit b′.

4. The output of the challenge is 1 if b = b′ and 0 otherwise. If PrivKeav
A,Π(λ) = 1, we say

that A succeeds.

Lemma 4.4.1. [Katz and Lindell, 2015, Chap. 2] Encryption scheme Π = (KeyGen, Enc, Dec)
with a message spaceM is perfectly secret if and only if it is perfectly indistinguishable, i.e., for
every adversary A it holds:

Pr(PrivKeav
A,Π(λ) = 1) = 1

2 .

Perfectly secret encryption schemes are non-practical because the size of the key space K
should be at least as large as the message space M, |K| ≥ |M| [Shannon, 1949]. For this rea-
son, we often relax secrecy requirements and grant the adversary A with limited computational
power with a small probabilistic chance of breaking the scheme, i.e., to obtain an advantage in the
indistinguishability challenge:

Pr(PrivKeav
A,Π(λ) = 1) >

1
2 .

In return, the size of the key space may become far smaller than the size of the message space.

Definition 4.4.4. [Katz and Lindell, 2015, Chap. 3] A function f : N→ R+ ∪{0} is negligible if
for every positive polynomial p there is an integer N such that for all integers n > N it holds that
f(n) < 1

p(n) .

Proposition 4.4.2. [Katz and Lindell, 2015, Chap. 3] Let negl1 and negl2 be negligible func-
tions. We have:

1. The function negl3(n) = negl1(n) + negl2(n) is negligible.

2. For any positive polynomial p, the function negl4(n) = p(n) · negl1(n) is negligible.

In the asymptotic approach, we let all PPT adversaries to get at most negligible advantage over
the scheme, given some integer-valued security parameter λ. In the indistinguishability challenge,
the advantage Adv(A(1λ)) is defined as the absolute difference between the success probability
achieved by A compared to a random guess.
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Definition 4.4.5. [Katz and Lindell, 2015, Chap. 3] A symmetric encryption scheme Π =
(KeyGen, Enc, Dec) has indistinguishable encryptions in the presence of an eavesdropper, if for
all PPT adversaries A there is a negligible function negl such that for all λ it holds:

Adv(A(1λ)) =
∣∣∣∣Pr(PrivKeav

A,Π(λ) = 1)− 1
2

∣∣∣∣ ≤ negl(λ),

where the probability is taken over the randomness used by A and the randomness used in the
challenge.

Finally, we recall the definition of a non-binary pseudorandom generator, as a function
{0, 1}l(λ) → {0, 1, ..., q − 1}L(λ), l(λ) < L(λ) polynomials, which given a perfectly binary
random seed s ∈ {0, 1}l(λ), outputs a string of L(λ) integers modulo q with a distribution indis-
tinguishable from the uniform by any PPT statistical test (distinguisher). The test returns 1 when it
distinguishes an input string’s distribution from the uniform distribution and returns 0 otherwise.
Pseudo-random generators can be viewed as instantiations of stream cipher keys, widely adopted
in modern cryptography. The generators can output discrete values different from only 0 and 1.

Definition 4.4.6. Based on [Katz and Lindell, 2015, Chap. 3]. Let L and l be polynomials and let
Gq be a polynomial-time algorithm such that q ∈ N and for any λ and input s ∈ {0, 1}l(λ) the
output of Gq(s) is w ∈ {0, 1, ..., q − 1}L(λ). We say that Gq is a pseudo-random generator, if the
following conditions hold:

1. For every λ it holds that L(λ) > l(λ).

2. For any PPT distinguisher D, there is a negligible function negl such that

Adv(D(1λ)) = |Pr(D(Gq(s)) = 1)− Pr(D(r) = 1)| ≤ negl(λ),

where the first probability is taken over uniform choices of s ∈ {0, 1}l(λ) and randomness
of D, and the second probability is taken over uniform choices of r ∈ {0, 1, ..., q − 1}L(λ)

and randomness of D.

4.5 Distortion-tolerant encryption

In its primary sense, a distortion-tolerant property denotes the capability to decipher ciphertexts
distorted by a transmission channel. Traditionally, encrypted data are protected by error correction
coding with a predefined correction capability. In this work, we consider encryption schemes that
output an approximation of the initial message, given a distorted ciphertext.

The distortion-tolerant property takes inspiration from the notion of distance-preserving en-
cryption described in Definition 4.5.1.

Definition 4.5.1. [Tex et al., 2018] LetM be a data set,K be a key space, d be a distance measure
and Enc be an encryption algorithm for data items inM. Then, Enc is d-distance preserving if:

∀m0, m1 ∈M and ∀k ∈ K : d(Enck(m0), Enck(m1)) = d(m1, m2).

When considering encryption of databases, Definition 4.5.1 cannot be relaxed without intro-
ducing inaccuracies in the result of queries on encrypted data [Tex et al., 2018]. However, in the
case of perceptual audio-visual data, small inaccuracies are usually acceptable or perceptually ir-
relevant. It is especially true in real-time applications that prioritize robustness and efficiency over
the quality of representation.



4.6 – Enciphering using spherical codes 77

Definition 4.5.2. Let dM and dC denote distance measures over the plaintext space M and the
ciphertext space C, respectively. We say that the encryption scheme Π = (KeyGen, Enc, Dec)
is distortion-tolerant with respect to these measures, if for every key k ∈ K, any two ciphertexts
c1, c2 ∈ C, and δ > 0 not too large, there is τ > 0 such that:

1. dC(c1, c2) < δ =⇒ dM(Deck(c1), Deck(c2)) < τδ.

2. τδ ≪ max
ci,cj∈C

dM(Deck(ci), Deck(cj)).

The notion of distortion-tolerant encryption introduced here is considerably relaxed compared
to the notion of distance-preserving encryption. Firstly, we use two different metrics over the
message and the ciphertext spaces. Furthermore, we allow some distance expansion τ between
the decrypted plaintexts Deck(c1) and Deck(c2), which is still small compared to the maximum
distance between plaintexts. Finally, the distortion-tolerant property applies locally in a ciphertext
neighborhood.

Every encryption scheme with a distortion-tolerant property is malleable by design. 1 Without
additional data-integrity mechanisms, an active attacker can modify the decrypted plaintext by
carefully changing the encrypted data. Moreover, given a pair (m, Enck(m)), the attacker may
easily guess or approximate the decryption result of all ciphertexts close to Enck(m). On the
other hand, the malleability does not necessarily compromise the secrecy of encryptions if the
enciphering algorithm uses a fresh cryptographic key k ∈ K for every encryption.

4.6 Enciphering using spherical codes

This section introduces a lossy enciphering technique for scrambling a sequence of points on the
unit hypersphere Sn, n > 1. The encryption scheme encodes the spherical points to codewords of
a spherical commutative group code C ⊂ S2n−1 and performs pseudo-random rotations from a
group of orthogonal matrices G. The result of this enciphering is a randomly-looking sequence of
codewords from C with a distribution indistinguishable from the uniform distribution.

This enciphering of codewords using rotations from G satisfies the distance-preserving pro-
perty because the spherical group code is geometrically uniform and also closed under rotations
from G. It turns out to be very useful if we consider the transmission of scrambled sequences of
codewords over a noisy channel. Provided that the channel noise level is not too high, this noise
would map into the decrypted plaintext without introducing much error.

4.6.1 Overview of the encryption scheme

The enciphering procedure scrambles a fixed-length sequence of spherical points X =
(x1, ..., xL(λ)), xℓ ∈ Sn, into a sequence of spherical codewords U = (u1, ..., uL(λ)), uℓ ∈ C ,
where λ is an integer-valued security parameter and L is a polynomial. The spherical code C lies
on the flat torus Tξ and is associated with the quotient of two full rank lattices Λβ ⊂ Λα ⊂ Rn

through a flat torus mapping Φξ, ξ = [ξ1, ..., ξn]T . Furthermore, the code has initial vector
σ = [ξ1, 0, ..., ξn, 0]T and is generated by a group G of 2n × 2n orthogonal matrices with k
generator matrices {G1, ..., Gk} isomorphic to Zd1 ⊕ ... ⊕ Zdk

, where d1 · .... · dk = M is the
order of the group.

1. An encryption algorithm is ‘malleable’ if it is possible to transform a ciphertext into another ciphertext which
decrypts to a bona fide plaintext.
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The diagram illustrating the enciphering scheme is shown in Figure 4.4. The scheme consists
of six procedures (KeyGen, RandGen, Encode, Decode, Encrypt, Decrypt):

1. KeyGen(1λ): for a given integer-valued security parameter λ (preferably λ = 256, and
no less than 128), KeyGen(1λ) outputs a secret seed s chosen uniformly from {0, 1}l(λ),
where l is a polynomial such that l(λ) < L(λ).

2. RandGen(s): for a given secret seed s, RandGen(s) generates a sequence of L(λ)
randomly-looking, positive modulo integers r = (r1, ..., rL(λ)), 1 ≤ rℓ ≤M .

3. Encode(X): for a given sequence of spherical points X = (x1, ..., xL(λ)), xℓ ∈ Sn, the
algorithm encodes every xℓ into a codeword pℓ ∈ C and outputs a sequence of spherical
codewords P = (p1, ..., pL(λ)).

4. Decode(Q): for a given sequence Q = (q1, ..., qL(λ)) of points on the flat torus Tξ, the
algorithm maps every qℓ into a point yℓ ∈ Sn and outputs a sequence Y = (y1, ..., yL(λ))
of points on Sn.

5. Encryptr(P ): for a given sequence of positive integers r = (r1, ..., rL(λ)), rℓ ≤ M ,
and a sequence of codewords P = (p1, ..., pL(λ)), pℓ ∈ C , the enciphering procedure
transforms every codeword pℓ into another codeword uℓ and outputs a sequence U =
(u1, ..., uL(λ)) depending upon r.

6. Decryptr(V ): for a given sequence of positive integers r = (r1, ..., rL(λ)), rℓ ≤M , and
a sequence V = (v1, ..., vL(λ)) of points on the flat torus Tξ, the deciphering procedure
outputs a sequence Q = (q1, ..., qL(λ)) of points on Tξ depending upon r.

Figure 4.4 – Simplified diagram of the encryption scheme for scrambling spherical data.

4.6.2 Encoding

The encoding procedure Encode(X), X = (x1, ..., xL(λ)) is performed by blocks, i.e.,
Encode(X) = (Encode(x1), ..., Encode(xL(λ))). Encoding of every xℓ consists of two consecu-
tive actions: mapping xℓ on the flat torus Tξ and then searching a close codeword pℓ ∈ C to that
mapped point.
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Let γn be a function which maps any point x ∈ Sn to a vector φ = [φ1, ..., φn]T , where
φ1, ..., φn−1 ∈ [0, π) and φn ∈ [0, 2π) are the spherical coordinates of x = [x1, ..., xn+1]T such
that:



x1 = cos(φ1),
x2 = sin(φ1) cos(φ2),

...
xn = sin(φ1) · ... · sin(φn−1) cos(φn),
xn+1 = sin(φ1) · ... · sin(φn−1) sin(φn).

The point ξ⊙φ, where⊙ denotes the Hadamard product, 2 lies inside the hyperbox
∏n

i=1[0, 2πξi)
and can be mapped to a new point Φξ(ξ ⊙φ) on the flat torus Tξ.

The second step is to find a codeword p ∈ C close to Φξ(ξ ⊙ φ) in terms of Euclidean
distance in a process which can be viewed as quantization. The higher is the order of the code,
the smaller the quantization error gets. Other factors contributing to the quantization error are the
density of the lattice Λα, and the selection process of a vector ξ which determines the geometrical
distribution of codewords on the sphere S2n−1.

The search can be considerably simplified by taking advantage of the isomorphism between
the group G and the quotient Λα/Λβ . Instead of comparing distances between Φξ(ξ ⊙φ) and the
codewords in C , one may find the closest lattice point z ∈ Λα to ξ ⊙ φ and map this point to
p = Φξ(z). Unfortunately, the closest lattice vector problem can become quite challenging unless
the lattice Λα has a special structure. For this reason, it is advisable to construct a spherical code
C associated with a lattice Λα isomorphic to one of the special lattices with efficient decoding
procedures (i.e., Zn, Dn or Γ8).

Although z is the closest lattice point to ξ ⊙ φ, the point Φξ(z) may be not the closest to
Φξ(ξ ⊙φ). Lemma 4.6.1 demonstrates that the maximum distance of Φξ(z) from the true closest
point c ∈ C does not exceed 2µ, where µ is the covering radius of Λα. Thus, provided a sufficiently
dense lattice Λα with a small covering radius, the overall quantization error is reduced.

Lemma 4.6.1. Let x ∈ Rn and let C be a commutative group code in R2n associated with a
lattice Λ in Rn through an inverse image Φ−1

ξ (C ). Let z be the closest point of Λ to x in terms of
Euclidean metric. Then, the distance between Φξ(z) and the closest code of C to Φξ(x) gets no
larger than 2µ, where µ is the covering radius of Λ.

Proof.
Let Qz = {q ∈ Λ : V(q) ∩ V(z) ̸= ∅} be the set containing z and its closest lattice neighbors
in terms of Euclidean metric, and let F(Φξ(Qz)) be the smallest convex polytope on the surface
of S2n−1 that contains Φξ(Qz) (without loss of generality, we can assume that such a polytope
exists). We have Φξ(x) ∈ F(Φξ(Qz)). In addition, F(Φξ(Qz)) lies on the union of all the
Voronoi regions of Φξ(q) ∈ Φξ(Qz). Thus, the closest codeword c ∈ C to Φξ(x) also belongs
to F(Φξ(Qz)). Finally:

∥Φξ(c)− Φξ(x)∥ ≤ ∥Φξ(c)− Φξ(z)∥ ≤ max
q∈Qz

∥Φξ(q)− Φξ(z)∥ ≤ max
q∈Qz

∥q − z∥ ≤ 2µ .

□

2. For two matrices A and B of size n × m, A ⊙ B is the n × m matrix C such that Cij = AijBij .
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We can notice, that the quantization on Sn is non-uniform. Since the encoding process in-
volves quantizing spherical coordinates φ1, ..., φn−1 using a dense lattice, the finest quantization
resolution concentrates near the poles of Sn and the coarsest close to the equator. This characte-
ristic must be taken into account when constructing a sufficiently dense encoding that minimizes
the maximum quantization error on Sn.

4.6.3 Decoding

In essence, the procedure Decode reverses the operations of the procedure Encode, i.e., it maps a
sequence Q = (q1, ..., qL(λ)) of points on Tξ back to a sequence Y = (y1, ..., yL(λ)) of points on
the hypersphere Sn.

For every q ∈ Tξ, let z = Φ−1
ξ (q) be restricted to the hyperbox

∏n
i=1[0, 2πξj). Then,

the rescaled version of z defined as z′ = [z1/ξ1, ..., zn/ξn]T belongs to
∏n

j=1[0, 2π). For
i = 1, ..., n− 1, if the i− th coordinate of z′ = [z′1, ..., z′n]T is larger or equal to π, we substitute
z′i by 2π − z′i. Finally, we apply the inverse y = γ−1

n (z′) ∈ Sn.

4.6.4 Encryption

The enciphering procedure Encrypt scrambles the input sequence of spherical codewords P =
(p1, ..., pL(λ)) by performing orthogonal matrix multiplications. The rotation matrices are selected
from the group G with regard to a pseudo-random sequence of positive integers r = (r1, ..., rL(λ)),
rℓ ≤M from the output of RandGen. The procedure can be expressed as:

Encryptr(P ) = (SelectG(r1) · p1, SelectG(r2) · p2, ..., SelectG(rL(λ)) · pL(λ)), (4.14)

where SelectG(rℓ) is some deterministic and injective function which chooses one of the M ma-
trices from G. The selection of matrices from the group G can be realized efficiently by taking ad-
vantage of the isomorphism between G and the cubic lattice Zd1⊕...⊕Zdk

, where d1 ·....·dk = M .
The principle of the procedure Encrypt is analogous to enciphering using a binary stream

cipher. The only substantial difference is the cardinality of possible values in the pseudo-random
sequence. Consequently, the secrecy of the procedure in the presence of an eavesdropper should
depend only on the quality of the pseudo-random generator. The well-known secrecy properties of
enciphering by binary stream ciphers [Katz and Lindell, 2015] are extended to non-binary ciphers
in Lemmas 4.6.2 and 4.6.3. Furthermore, Lemma 4.6.4 demonstrates that an eavesdropper cannot
get any partial information from the ciphertext (i.e., to approximate the plaintext value).

Lemma 4.6.2. Let C = Gσ be a spherical commutative group code of order M with the initial
vector σ ∈ S2n−1, and associated with a commutative group of orthogonal matrices G. Moreo-
ver, let TrueRandGen(λ) be a function which outputs true random entropy r $←− {1, ..., M}L(λ)

obtained by an entropy collector, where $←− denotes a uniformly distributed probabilistic process
assignment. Then, the encryption scheme Π̃ = (TrueRandGen, Encrypt, Decrypt) with mes-
sages of fixed length L(λ) is perfectly secret.

Proof.
Let P be a random variable such that Pr(P = P ) is the probability of selecting the vector
of plaintext codewords P , and let U be a random variable such that Pr(U = U) denotes the
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probability of obtaining the encrypted vector of codewords U = Encryptr(P ). Recalling Defi-
nition 4.4.2, the scheme Π̃ would be perfectly secure if for every vector of codewords P chosen
with any probability distribution, and every vector of encrypted codewords U , it holds that:

Pr(P = P | U = U) = Pr(P = P ).

We will firstly prove that given a uniformly random vector r $←− TrueRandGen(λ), each uℓ ∈ U
can be any codeword of C with uniform probability. Then, we will show the mutual indepen-
dence of u1, ..., uL(λ), resulting in U being a vector of uniformly random codewords from C

for any distribution of P . Finally, we will prove the perfect secrecy of Π̃.
Let SelectG(rℓ) = Grℓ

. Since pℓ, uℓ ∈ C , there exists Gwℓ
∈ G such that pℓ = Gwℓ

σ and
uℓ = Grℓ

Gwℓ
σ. It is enough to show, that Genc,ℓ = Grℓ

Gwℓ
can be any element of G with

uniform probability.
The group of orthogonal matrices G with multiplication operation is isomorphic to Z = Zd1 ⊕
...⊕Zdj

with addition operation, where di ∈ N and d1 ·....·dj = M . Therefore, Gwℓ
, Grℓ

, Genc,ℓ

can be isomorphically mapped to swℓ
, srℓ

, senc,ℓ ∈ Z , where srℓ
+ swℓ

= senc,ℓ.
Let Xℓ : ΩXℓ

→ Z and Yℓ : ΩYℓ
→ Z be independent random variables such that Xℓ has a

uniform distribution over Z and Yℓ has the same probability distribution as P . We have:
Pr(Encryptrℓ

(pℓ) = Genc,ℓσ) = Pr(Xℓ + Yℓ = senc,ℓ)

=
M∑

m=1

∑
sn∈An−sm

Pr(Xℓ = sm) Pr(Yℓ = sn)

=
M∑

m=1

∑
sn∈An−sm

1
M

Pr(Yℓ = sn)

= 1
M

M∑
m=1

∑
sn∈An−sm

Pr(Yℓ = sn) = 1
M

,

where An − sm = {sn ∈ Z : sn + sm = senc,ℓ}.
We have yet to show the statistical independence. For Xℓ, Yℓ defined as before, let Zℓ = Xℓ+Yℓ.
Zℓ are mutually independent if and only if:

Pr[Zℓ = skℓ
| (Z1 = sk1)∧...∧(Zℓ−1 = skℓ−1)∧(Zℓ+1 = skℓ+1)∧...∧(ZL(λ) = skL(λ))] = Pr(Zℓ = skℓ

).

Let [(Z1 = sk1) ∧ ... ∧ (Zℓ−1 = skℓ−1) ∧ (Zℓ+1 = skℓ+1) ∧ ... ∧ (ZL(λ) = skL(λ))] be denoted
by Bℓ,k. Then, for any 1 ≤ ℓ ≤ L(λ) we have:

Pr(Zℓ = skℓ
| Bℓ,k) = Pr(Xℓ + Yℓ = skℓ

| Bℓ,k)

=
M∑

m=1

∑
sn∈An−sm

Pr(Xℓ = sm | Bℓ,k) Pr(Yℓ = sn | Bℓ,k)

=
M∑

m=1

∑
sn∈An−sm

Pr(Xℓ = sm) Pr(Yℓ = sn | Bℓ,k)

=
M∑

m=1

∑
sn∈An−sm

1
M

Pr(Yℓ = sn | Bℓ,k) = 1
M

= Pr(Zℓ = skℓ
),
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where An − sm is defined as before. Finally, we get:

Pr(P = P | U = U) = Pr(U = U | P = P ) · Pr(P = P )
Pr(U = U)

= Pr(Encryptr(P ) = U) · Pr(P = P )
Pr(U = U)

= M−L(λ) · Pr(P = P )
M−L(λ) = Pr(P = P ).

□

The consequence of Lemma 4.6.2 is that every PPT adversary A has no advantage in the
indistinguishability challenge if the matrices from G are selected uniformly at random:

Pr(PrivKeav
A,Π̃(λ) = 1) = 1

2 .

Lemma 4.6.3. Let r = RandGen(s), where RandGen is a pseudo-random generator, s is cho-
sen uniformly at random from {0, 1}l(λ) and r ∈ {1, ..., M}L(λ). In addition, let C be a spherical
commutative group code of order M with the initial vector σ ∈ S2n−1 and associated with a
commutative group of orthogonal matrices G. Then, for any sequence P = (p1, ..., pL(λ)) of co-
dewords pℓ ∈ C chosen independently from s, the procedure Encryptr(P ) gives indistinguishable
encryptions in the presence of an eavesdropper.

Proof.
Let Π = (RandGen, Encrypt, Decrypt) and Π̃ = (TrueRandGen, Encrypt, Decrypt),
where TrueRandGen is a function which outputs true random entropy over {1, ..., M}L(λ)

obtained by an entropy collector. We will show that the existence of any PPT adversary gaining
a non-negligible advantage in the indistinguishability challenge over the encryption scheme Π
implies the existence of a PPT distinguisher that differentiates RandGen from TrueRandGen.
Let A be a PPT adversary who gets a non-negligible advantage in the indistinguishability chal-
lenge PrivKeav

A,Π and let f be a non-negligible function such that:

Pr(PrivKeav
A,Π(λ) = 1) >

1
2 + f(λ).

Moreover, let D be an algorithm which tries to distinguish the outputs of RandGen from
TrueRandGen by emulating the indistinguishability challenge with A. The behavior of D is
described as follows:
1. D is given a vector r of length L(λ) generated by RandGen or by TrueRandGen.
2. The algorithm asksA(1λ) to produce two vectors of codewords U0 = [u0,1, ..., u0,L(λ)] and

U1 = [u1,1, ..., u1,L(λ)], where u0,ℓ, u1,ℓ ∈ C for ℓ = 1, ..., L(λ).
3. D randomly chooses b ∈ {0, 1} and produces V = Encryptr(Ub).
4. D provides V to A and then obtains b′. Finally, D outputs 1 if b′ = b and 0 otherwise.
D is PPT, because A is PPT. Moreover, D outputs 1 with exactly the same probability as A in
the indistinguishability challenge:

Pr(D(r← TrueRandGen) = 1) = Pr(PrivKeav
A,Π̃(λ) = 1) = 1

2
Pr(D(r← RandGen(s)) = 1) = Pr(PrivKeav

A,Π(λ) = 1) >
1
2 + f(λ).



4.6 – 4.6.4 Encryption 83

Finally, we get:

Adv(D(1λ)) = |Pr(D(r← RandGen(s)) = 1)− Pr(D(r← TrueRandGen) = 1)| =

=
∣∣∣Pr(PrivKeav

A,Π(λ) = 1)− Pr(PrivKeav
A,Π̃(λ) = 1)

∣∣∣ <

∣∣∣∣12 + f(λ)− 1
2

∣∣∣∣ = f(λ),

what means that D efficiently distinguishes output of RandGen from TrueRandGen, contra-
dicting the pseudo-randomness of RandGen.

□

Lemma 4.6.3 states that the eavesdropper is unable to determine the exact value of any pℓ ∈ P
from the sequence Encryptr(P ) with a probability significantly higher than a random guess. Ho-
wever, in the case of voice encryption, the attacker is usually satisfied with obtaining the approxi-
mation of pℓ. Lemma 4.6.4 extends the result of Lemma 4.6.3 to a situation where the attacker
tries to determine if pℓ belongs to some subset B ⊂ C of codewords.

Lemma 4.6.4. Let r = RandGen(s), where RandGen is a pseudo-random generator, s is chosen
uniformly at random from {0, 1}l(λ), and r ∈ {1, ..., M}L(λ). In addition, let C be a spherical
commutative group code of order M with the initial vector σ ∈ S2n−1 and associated with a
commutative group of orthogonal matrices G. Then, for any sequence P = (p1, ..., pL(λ)) of
codewords pℓ ∈ C chosen independently from s, for any 0 < ℓ ≤ L(λ), and for any PPT
adversary A, there is a negligible function negl such that:

Pr(A(1λ, pℓ ∈ B | Encryptr(P )) = 1) ≤ |B|
M

+ negl(λ),

where B is any subset of C with cardinality |B|, and the probability is taken over uniform choice
of s ∈ {0, 1}l(λ) and the randomness of A.

Proof.
Let us assume a PPT adversary A who can efficiently estimate pℓ for some fixed ℓ, i.e., there
exists a non-negligible function f such that:

Pr(A(1λ, pℓ ∈ B | Encryptr(P )) = 1) >
|B|
M

+ f(λ),

We will show that we can construct an adversary A∗ who violates the indistiguishability of
encryptions of the scheme Π = (RandGen, Encrypt, Decrypt).
Let IB , IC /B be the sets of all vectors of codewords in C of length L(λ) whose ℓ − th code-
word belongs respectively to B or to C /B. Then, let us define the behavior of A∗ playing the
indistiguishability challenge:

1. A∗ chooses at random P0 from IB and P1 from IC /B .

2. Upon reception of the encrypted vector U , A∗ invokes A(1λ, pℓ ∈ B | U)
3. A∗ forwards the output of A as b′.
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The adversaryA is PPT, henceA∗ is also PPT. In addition,A∗ succeeds if and only ifA outputs
b. Therefore, we obtain:

Pr[PrivKeav
A,Π(λ) = 1] = Pr[A(1λ, pℓ ∈ B | Encryptr(Pb)) = b] =

= 1
2 Pr

P0←IB

[A(1λ, pℓ ∈ B | Encryptr(P0)) = 1] + 1
2 Pr

P1←IC/B

[A(1λ, pℓ ∈ B | Encryptr(P1)) = 0] >

>
1
2

( |B|
M

+ f(λ)
)

+ 1
2

(
M − |B|

M
+ f(λ)

)
= 1

2 + f(λ).

It follows that A∗ efficiently breaks the scheme Π, contradicting indistinguishability of Π.

□

4.6.5 Decryption

The procedure Decrypt is similar to enciphering with the only difference that we take the transpose
of the selected matrices before performing the rotation:

Decryptr(V ) = (SelectG(r1)T · v1, SelectG(r2)T · v2, ..., SelectG(rL(λ))T · vL(λ)), (4.15)

where V = (v1, ..., vL(λ)) is a sequence of points on the flat torus Tξ (not necessarily codewords).

Lemma 4.6.5. Let v1, v2 ∈ Tξ. We have ∥v1 − v2∥ = ∥Decryptr(v1)−Decryptr(v2)∥, where
∥ • ∥ denotes the Euclidean metric.

Proof.
Let Decryptr(v1) = q1 and Decryptr(v2) = q2. There exist Gd ∈ G such that v2 = Gdv1
and q2 = Gdq1, and two matrices Gv, Gq ∈ G such that v1 = Gvσ and q1 = Gqσ. We have:

∥v1 − v2∥ = ∥Gvσ −GdGvσ∥ = ∥σ −Gdσ∥ = ∥Gqσ −GdGqσ∥ = ∥q1 − q2∥.

□

The deciphering procedure is distance-preserving in the Euclidean metric, as demonstrated by
Lemma 4.6.5. However, we are often more concerned about the distance relations resulting from
the composition of the procedures Decrypt and Decode.

Let p, q ∈ Πn−1
i=1 [0, πξi) × [0, 2πξn) and let γξ,n(z) = γn(z ⊙ ξ). The Euclidean distance

∥γ−1
ξ,n(p)− γ−1

ξ,n(q)∥ is bounded by:

0 ≤ ∥γ−1
ξ,n(p)− γ−1

ξ,n(q)∥ = (4.16)

= 2− 2
n∑

i=1
cos(ui) cos(vi)

i−1∏
j=1

sin(uj) sin(vj)− 2
n∏

i=1
sin(ui) sin(vi) ≤ (4.17)

≤ ∥p− q∥
ξmin

. (4.18)

The above bounds relate the metric in the hyperbox Πn−1
i=1 [0, πξi) × [0, 2πξn) with the metric on

the hypersphere Sn. We already know from Equation 4.13, that:

2
π
∥p− q∥ ≤ ∥Φξ(p)− Φξ(q)∥ ≤ ∥p− q∥,
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where ξmin = min
1≤i≤n

ξi ̸= 0 and assuming ∥p − q∥ ≤ ξmin. Thus, the procedure Decode may

lead to a distance expansion by a factor up to τ = π/(2ξmin):

∥Encryptr(Φξ(p))− Encryptr(Φξ(q))∥ < δ =⇒ ∥Decode(p)−Decode(q)∥ <
π

2ξmin
δ

for δ > 0 not too large. On the other hand, from (4.17) we get that the distance ∥γ−1
ξ,n(u)−γ−1

ξ,n(v)∥
goes down to 0 when approaching the poles of the hypersphere Sn. Consequently, we may notice
that the vectors near the poles of Sn should be relatively less distorted by a transmission channel
than the vectors close to the equator.

4.6.6 Transmission over the Gaussian channel

Spherical commutative group codes described in this chapter can be viewed as equal-energy block
codes with constant average power, and used as error-correction codes adapted for transmission
over noisy channels [Slepian, 1968]. In this work, we want to investigate the impact of channel
noise on reception error and symbol decoding. In contrast to classical digital communications,
some detection error is acceptable. In the optimal scenario, a growing noise level should gradually
increase the level of detection errors. However, a significant noise may break this desired conti-
nuity between transmission and detection errors, severely disrupting the communication.

Let u ∈ C be an encrypted codeword sent over the Gaussian channel. Upon reception, the
recipient observes v̂ = u + n, where n represents channel noise sampled from Gaussian distri-
bution with zero mean. Provided that the enciphered vector u can be any codeword of C with
equal probability, the maximum likelihood detector selects the closest codeword in C in terms of
the Euclidean metric. Moreover, due to the uniform geometrical distribution of codewords on the
sphere, the error probability of the optimal detector is the same for every sent codeword. This pro-
perty turns out to be very useful in the context of this work because the deciphering error caused
by Gaussian noise is statistically independent of the ciphertext.

Before decryption, the received codeword v̂ = [v̂1, ..., v̂2n] should be projected to v = Gσ on
the flat torus Tξ. The rotation matrix G is of the form:

Rot(α1) 0 ... 0
0 Rot(α2) ... 0
...

...
. . .

...
0 0 ... Rot(αn)


2n×2n

where α1, α2, ..., αn are some unknown rotation angles. Assuming a Gaussian noise, the vector
v = [v1, ..., v2n]T can be found by projecting the coordinates of v̂ onto the respective circles of
radius

√
σ2

2i−1 + σ2
2i:

[v2i−1, v2i]T = [v̂2i−1, v̂2i]T
√

σ2
2i−1 + σ2

2i√
v̂2

2i−1 + v̂2
2i

, i = 1, ..., n. (4.19)

The projection of v̂ onto v is an additional source of error which is difficult to tackle. When
the noise level is small, however, the overall distortion caused by the operation is limited. Another
situation may occur, when the distance ∥v̂ − u∥ overreaches ξmin. In such a case, v may be
projected on the opposite side of the torus Tξ, leading to a high error as illustrated in Figure 4.5.
A possible solution to this problem is to increase the energy of the transmitted vectors.
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Figure 4.5 – Projection of vectors to the flat torus Tξ in presence of excessive noise. The initial
vector u ∈ C on the orbit of radius ξmin is transmitted over a transmission channel and received
as v̂ = u+n. The vector v̂ is projected to the vector v on the opposite side of the orbit, far from u.

4.7 Scrambling of image colors

The enciphering scheme described in this chapter is designed for audio-visual data represented
using spherical coordinates. This section presents a simple distortion-tolerant encryption model for
scrambling colors in an image to illustrate the encoding scheme detailed in the previous sections.

Color of an image pixel is usually represented in the RGB model as a sum of additive primary
colors: red, green, and blue. In computer graphics and related domains, alternative representa-
tions of the RGB model may be more suitable for encoding and color-related transformations. For
example, one may consider a modification of the popular HCL (hue, chroma, lightness) represen-
tation [Zeileis et al., 2009]:

L = max(R, G, B) + min(R, G, B)− 1, (4.20)

C =
√

max(R, G, B)2 −min(R, G, B)2, (4.21)

H′ =


0 if C = 0
G−B

C mod 6 if max(R, G, B) = R,
B−R

C + 2 if max(R, G, B) = G,
R−G

C + 4 if max(R, G, B) = B,

(4.22)

where R, G, B ∈ [0, 1]. The colorspace in the (L, C, π/3H′) representation can be illustrated as a
3D ball of radius one centered at the origin (Fig. 4.6). The north and the south poles of the sphere
represent respectively white and black, whereas the equator contains all the colors with maximum
chroma C. Moreover, as we approach the center of the sphere, the intensity of all the colors fade
to grey.

Since the proposed enciphering scheme requires spherical data, the (L, C, H′) representation
may be expressed in spherical coordinates:

I =
√

L2 + C2, (4.23)

Υ =

0 if C = 0,

arctan
(

L
C

)
+ π

2 otherwise,
(4.24)

H = π

3 H′. (4.25)

Parameter I denotes the modulus and Υ ∈ [0, π], H ∈ [0, 2π] are the spherical angles of a color.
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Figure 4.6 – RGB colors in the modified lightness-chroma-hue (LCH) representation.

In the following toy example, we will scramble the angular coordinates (Υ, H) of pixels in
an image of size L = 384 × 512 pixels presented in Figure 4.7a, and transmit these enciphered
codewords over a Gaussian channel. We will assume the parameter I is sent unencrypted over a
secret channel without errors for the simplicity of the example.

Let X = (x1, ..., xL) be a sequence obtained by reading the image pixels by rows and
discarding the modulus I. Pixels are represented in the Cartesian coordinate system by xℓ =
[cos(Υℓ), sin(Υℓ) cos(Hℓ), sin(Υℓ) sin(Hℓ)]T ∈ S2. The procedure Encode(X) is done in three
steps. Firstly, we extract the angular coordinates of every pixel γ2(xℓ) = [Υℓ, Hℓ]T . Then, we
quantize the vector [Υℓ, Hℓ]T /

√
2 with a budget of 31 bits by searching the closest vector in the

scaled checkerboard lattice:
Λ = 2π

215 D2. (4.26)

Finally, we map the quantized vectors using a torus map Φξ, where ξ = [1, 1]T /
√

2. We obtain
a sequence P = Encode(X) of codewords from a spherical group code C = Gσ of order 231,
where σ = [1, 0, 1, 0]T /

√
2 is the initial codeword, and G is a group of rotations associated with

the quotient Λ/(2πZ2). The group G is isomorphic to Z215 ⊕ Z216 and has two 4 × 4 generator
matrices:

G1 =
[
Rot(2π/215) 0

0 Rot(0)

]
and G2 =

[
Rot(2π/216) 0

0 Rot(2π/216)

]
.

The sequence P = [p1, ..., pL]T is scrambled using two independent generators PRNGA and
PRNGB with different seeds sA and sB , which were instantiated in our toy example by a built-
in NumPy 3 random integer sequence generator. The first generator outputs numbers in the range
{1, ..., 215} and the second in the range {1, ..., 216}, resulting in 31 bits of random data. Given
some pairs of random numbers (rA,ℓ, rB,ℓ) produced by the generators, the scrambling procedure
is described by uℓ = G

rA,ℓ

1 G
rB,ℓ

2 pℓ. All scrambling operations are summarized in Algorithm 2.
Figure 4.7b depicts the scrambled image obtained by performing the procedure Decode on the

enciphered sequence U and restoring the initial modulus I. Despite the seemingly random colors
of the pixels, a careful observer may notice some intensity leakage from I, which apparently keeps
some shape information in the encrypted image.

3. https://numpy.org/

https://numpy.org/
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Figure 4.8 illustrates several images restored from scrambled codewords U distorted by Gaus-
sian noise with signal-to-noise ratio (SNR) equal to 20 dB and 10 dB. The inserted noise intro-
duces granularity into the deciphered image, similar to salt-and-pepper noise or speckle-noise in
synthetic aperture radar (SAR) images [Lee, 1981]. Nonetheless, even at high noise intensity, a
traditional Korean building, a tree, and three persons shown in the picture are easily recognizable.

(a) Initial image. (b) Scrambled and decoded image.

Figure 4.7 – Scrambling of colors in the image of size 384 × 512. Pixel colors of the initial
image were converted to (I, Υ, H) representation. In the next step, the angular coordinates (Υ, H)
were scrambled using a spherical group code in R4, and decoded back to the initial domain. The
parameter I remained unchanged.

(a) SNR = 20 dB. (b) SNR = 10 dB.

Figure 4.8 – Images restored from scrambled spherical codewords distorted by Gaussian noise.

The quality of a descrambled image is directly related to the error introduced by noise. Let U =
(u1, ..., uL) be a sequence of scrambled spherical codewords representing the angular coordinates
(Υ, H) of image pixels, V = (v1, ..., vL) be a sequence of received spherical points projected
onto the flat torus Tξ, and Y = (y1, ..., yL) be a sequence of descrambled spherical points in R3.
Figure 4.9 displays the errors ∥xℓ−yℓ∥ and ∥uℓ−vℓ∥ of first 100 codewords, caused by Gaussian
noise at SNR = 15 dB. It can be noticed that ∥xℓ − yℓ∥ is usually slightly larger than ∥uℓ − vℓ∥.
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Figure 4.10 displays the sample root mean square error (RMSE) of X and U caused by Gaussian
noise at SNR between 5 dB and 25 dB with a 0.5 dB step. The statistics are defined as:

RMSEX =

√∑L
ℓ=1 ∥xℓ − yℓ∥2

L
, (4.27)

RMSEU =

√∑L
ℓ=1 ∥uℓ − vℓ∥2

L
. (4.28)
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Figure 4.9 – Error between (blue) initial/deci-
phered and (red) sent/received spherical points.
Error caused by Gaussian noise at SNR = 15 dB
inserted into enciphered data.
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spherical data in function of Gaussian noise in-
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Algorithm 2:
Data: Image with L pixels, random seeds sA and sB ;
Result: a sequence U of L scrambled codewords ;
U ←− ∅;
for ℓ← 1 to L do

pixelℓ ←− ReadPixel(Image) ; // read a pixel
// discard the modulus I, keep Υ and H
xℓ ←− ProjectToSphere(pixelℓ);
// encode to a spherical codeword
pℓ ←− Encode(xℓ);
// encipher the codeword
(rA,ℓ, rB,ℓ)←− (PRNGA(sA), PRNGB(sB));
uℓ ←− G

rA,ℓ

1 G
rB,ℓ

2 pℓ;
// append the enciphered codeword to U
U ←− append(U, uℓ);

end
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4.8 Summary

This chapter presented a novel technique for scrambling spherical points on Sn, using a spherical
code on a flat torus. Enciphering is done by performing random rotations from a commutative
group of 2n × 2n orthogonal matrices isomorphic to quotients of nested lattices with efficient
decoding algorithms.

The use of geometrically uniform spherical codes and commutative rotations makes encrypted
data particularly suitable for transmission over a communication channel. Moreover, robust deci-
phering of ciphertexts distorted by the channel may be advantageous when a small inconsistency
between the initial and decrypted information is acceptable.

The encryption scheme gives indistinguishable encryptions in the presence of an eavesdropper
when rotation matrices are chosen based on the output of a non-binary pseudo-random generator
with a fresh secret seed. However, the ciphertexts are malleable by design, and the scheme does
not offer any data integrity.

The technique has been illustrated by scrambling colors in an image. The introduction of Gaus-
sian noise with varying intensity to the ciphertext caused a gracefully progressive degradation of
the decrypted image quality. Nevertheless, the main content of the image remained well preser-
ved even in the presence of significant noise. These promising results suggest that the presented
scheme would be suitable in other audio-visual applications that prioritize information content
over quality (i.e., speech intelligibility versus speech quality).

Some further investigation of the encryption scheme would be beneficial. Firstly, the quanti-
zation of spherical points on Sn is non-uniform, with the finest resolution near the hypersphere’s
poles and the coarsest resolution near the equator. This non-uniformity leads to a suboptimal al-
location of bits used for the representation of vectors on the hypersphere. Furthermore, a more
balanced codeword distribution could reduce the amount of randomness required by the enciphe-
ring block and help to predict the impact of channel noise on decryption error.

Another goal to pursue would be the construction of spherical codes with high density and a
simple structure in any selected dimensions. The use of dense lattices in the construction does not
necessarily imply high density for the associated spherical codes.

Finally, it would be worthwhile to propose some data-integrity mechanism that allows the
recipient to detect unacceptable ciphertext modifications from a malicious attacker in the presence
of channel distortion. Despite the lack of strong security guarantees, such a mechanism could be
useful in real-time or near real-time applications when the attacker has little time to carry any
sophisticated attack.

Chapter 5 presents an experimental speech encryption scheme for secure voice communi-
cations, which enciphers data using spherical commutative group codes. The scheme scrambles
independently three parameters of speech signals: energy, pitch and spectral envelope, and pro-
duces a speech-like signal adapted for transmission over voice channels. The system is capable of
decrypting vocal parameters distorted by voice channels. The reconstruction of the initial speech
is achieved by a vocoder with trained neural networks.



CHAPTER 5
Distortion-tolerant
speech encryption

This chapter presents an experimental distortion-tolerant speech encryption scheme for
secure voice communications over voice channels that combines the robustness of speech
scramblers and a higher security level offered by digital ciphers. The system scrambles
vocal parameters of a speech signal (energy, pitch, spectral envelope) using the spherical
commutative group codes described in Chapter 4, and outputs a pseudo-speech signal
robust against channel distortion or signal compression. Initial speech is reconstructed
using a synthesizer based on the LPCNet architecture. The decrypted speech quality
depends on channel distortion without experiencing cliff effects with a sudden loss of
digital signal reception, which is typical in the digital domain.
The encryption scheme is thoroughly detailed, emphasizing design constraints, opera-
tional characteristics, security, robustness against distortion, and computational com-
plexity. The simulations are supported by real-world experiments. The encrypted signal
was successfully transmitted over FaceTime between two mobile phones, and a group
of about 40 listeners evaluated the perceptual quality and intelligibility of decrypted
speech. The results are thoroughly described and analyzed.

91



92 CHAPTER 5 — Distortion-tolerant speech encryption

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Speech encryption scheme . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Speech encoding . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Enciphering . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Pseudo-speech synthesis . . . . . . . . . . . . . . . . . . . 100
5.2.4 Signal transmission and analysis . . . . . . . . . . . . . . . 103
5.2.5 Deciphering . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.6 Speech resynthesis . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.1 Security considerations . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Tolerance to signal distortion and large deciphering errors . 109
5.3.3 Selection of bounds for the signal parameters . . . . . . . . 111
5.3.4 The narrowband LPCNet training data . . . . . . . . . . . . 112

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 115
5.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.3 Speech quality evaluation . . . . . . . . . . . . . . . . . . 122
5.4.4 Algorithmic latency and computational complexity . . . . . 126

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



5.0 – 93

Glossary

List of abbreviations
AWGN Additive White Gaussian Noise
LPC Linear Prediction Coding
MAC Message Authentication Code
MFCC Mel-Frequency Cepstral Coefficients
MNRU Modulated Noise Reference Unit
MOS Mean Opinion Score
MUSHRA MUltiple Stimuli with Hidden Reference and Anchor
PCM Pulse Coded Modulation
PPT Probabilistic Polynomial Time
PRNG Pseudo-Random Number Generator
PSD Power Spectral Density
RMSE Root Mean Squared Error
SNR Signal-to-Noise Ratio
VAD Voice Activity Detection
VoIP Voice over Internet Protocol

Notation - spherical codes and lattices

Sn unit sphere in Rn+1 centered at the origin
C spherical commutative group code (see Section 4.3)
σ initial codeword of the code C
G commutative group of orthogonal matrices
Gi orthogonal matrix i from G
Tξ flat torus in R2n associated with a positive unit vector ξ ∈ Rn

Φξ(•) torus mapping Rn → R2n associated with ξ ∈ Rn (see Section 4.3.2)
Pξ pre-image of the torus mapping Φξ

γn(x) function Sn → Rn which outputs angular coordinates of x
Γ8 Gosset lattice in R8

Notation - speech and pseudo-speech

ε(init), ε(dec) initial and deciphered frame energies
ε̃(enc), ε̃(rec) enciphered and received frame energies (mark the tilde)
p(init), p(dec) initial and deciphered pitch periods
p̃(enc), p̃(rec) enciphered and received pitch periods (mark the tilde)
D(init), D(dec) initial and deciphered vectors on S8 representing spectral envelopes
D̃(enc), D̃(rec) enciphered and received vectors on S15 representing spectral envelopes
pmin, pmax minimum and maximum value of p(init) and p(dec)
p̃min, p̃max minimum and maximum value of p̃(enc) and p̃(rec)
εmin, εmax minimum and maximum value of ε(init) and ε(dec)
ε̃min, ε̃max minimum and maximum value of ε̃(enc) and ε̃(rec)
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Notation - enciphering and deciphering

v scrambling vector of length 10
ρ(init), ρ(dec) integers representing initial and deciphered frame energies
ρ(enc), ρ(rec) integers representing enciphered and received frame energies
κ(init), κ(dec) integers representing initial and deciphered pitch periods
κ(enc), κ(rec) integers representing enciphered and received pitch periods
χ(init), χ(dec) vectors in R8 representing initial and deciphered spectral envelopes
χ(enc), χ(rec) vectors in R8 representing enciphered and received spectral envelopes
ρlow, ρhigh bounds of ρ(init) and ρ(dec)
κlow, κhigh bounds of κ(init) and κ(dec)
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5.1 Motivation

Early systems for secure voice communication relied on analog signal scrambling in time and
frequency domains. Their role was to obscure a conversation by making the speech signal unin-
telligible for interceptors [Kak, 1983, MacKinnon, 1980]. Although unsecure [Goldburg et al.,
1993, Zhao et al., 2007], analog-domain techniques had two crucial advantages over emerging di-
gital systems based on enciphering compressed speech. Firstly, they offered high speech quality at
the receiving end, compared with suboptimal low-bitrate digital voice compression and synthesis.
Secondly, the scrambled speech signal was exceptionally robust against distortion introduced by
telephone lines because transmission noise was linearly added to the reconstructed speech.

In the late 70s and the early 80s, researchers attempted to combine the robustness of analog
scrambling and the security offered by rigorous digital enciphering. The result was a new class
of transform-domain scramblers that performed digital scrambling of linearly transformed speech
samples [Kak, 1983]. Since all transformations done on speech samples were norm-preserving, the
noise energy introduced into the ciphertext did not expand after decryption. The first transform-
domain scrambler that was exploiting approximately band-limited prolate spheroidal sequences
[Slepian and Pollak, 1961] was presented by Wyner [Wyner, 1979, Kaliski, 1984], and inspired
new speech scrambling techniques [Lin-Shan Lee et al., 1984, Goldburg et al., 1993].

This chapter presents an experimental joint source-cryptographic enciphering scheme for
secure voice communications over voice channels, which to some extent enjoys the similar
distortion-tolerant property of speech scramblers. The lossy enciphering unit scrambles the per-
ceptual speech parameters (loudness, pitch, timbre) of a recorded speech signal using the distance-
preserving techniques described in Chapter 4, and produces a synthetic signal adapted for trans-
mission over a voice channel. Upon reception, a recipient who owns a valid cryptographic key
restores distorted copies of the original speech parameters and decodes the speech signal with the
help of a trained neural vocoder.

The system architecture and its operation is thoroughly detailed, emphasizing security aspects,
computational complexity, and robustness to distortion. The scheme operates on speech frames
and produces an enciphered signal of equal duration, what can be seen as a strong advantage for
making the system working real-time. Moreover, it is justified that encrypted speech is computa-
tionally indistinguishable from random when enciphering is done using a secure pseudo-random
number generator (PRNG) with a secret seed of a sufficient length.

Simulations and real-world experiments follow the system description. Simulations confirmed
the scheme’s capability to decode mildly distorted signals. Furthermore, the encrypted speech si-
gnal was transmitted over FaceTime between two mobile phones and successfully decrypted. A
speech quality assessment with about 40 listeners showed that the proposed encryption scheme
produces intelligible speech and is robust against Gaussian noise at SNR = 15 dB and voice com-
pression at bitrate 48 kbps with the Opus-Silk speech coder. Finally, the preliminary computational
analysis suggests that the optimized system implementation may run on high-end portable devices.
The experimental code used in simulations and speech samples evaluated in the speech quality as-
sessment are available online. 1

This chapter is organized as follows. Section 5.2 introduces and details the speech encryption
algorithm. Section 5.3 discusses the system’s operation and security, and Section 5.4 presents the
evaluation results. Finally, Section 5.5 concludes the work and gives future prospects.

1. https://github.com/PiotrKrasnowski/Speech_Encryption

https://github.com/PiotrKrasnowski/Speech_Encryption
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5.2 Speech encryption scheme

Figure 5.1 illustrates a simplified model of distortion-tolerant speech encryption scheme, consis-
ting of a speech enciphering unit and a complementary deciphering unit. The enciphering unit
takes as input a binary key-stream produced by a pseudo-random number generator (PRNG) with
a secret seed s of length at least 128 bits, and samples of a narrowband speech signal. In the first
processing step, the speech encoder maps 20 ms speech frames indexed by ℓ = 0, 1, 2, ... into a
sequence of vocal parameters (ε(init),ℓ, p(init),ℓ, D(init),ℓ), where ε(init),ℓ corresponds to the fra-
me’s energy, p(init),ℓ is a pitch period, and D(init),ℓ is a vector representing the shape of a spectral
envelope.

The encoding process is followed by enciphering using randomness produced by the PRNG.
Vocal parameters of every frame are independently scrambled into a new set of parameters
(ε̃(enc),ℓ, p̃(enc),ℓ, D̃(enc),ℓ) defined over a new space of pseudo-speech parameters (tagged by a
tilde). Finally, the scrambled sequence is forwarded to the pseudo-speech synthesizer, which pro-
duces a harmonic, wideband signal resembling pseudo-speech. The synthetic signal is a conca-
tenation of 25 ms frames with a 5 ms overlap, where every frame carries one set of enciphered
parameters. Consequently, the encrypted signal duration is the same as the duration of the initial
speech, which is an essential requirement in real-time operation.

Figure 5.1 – Simplified diagram of the distortion-tolerant speech encryption scheme.

Due to the speech-like properties of the synthetic signal, it can be transmitted over a wideband
digital voice channel without much risk of suppression by a Voice Activity Detector (VAD). Upon
reception of the signal samples, the paired deciphering unit extracts distorted copies of the sent pa-
rameters (ε̃(rec),ℓ, p̃(rec),ℓ, D̃(rec),ℓ) and performs descrambling using the same binary key-stream
produced by its PRNG. In the last step, restored parameters (ε(dec),ℓ, p(dec),ℓ, D(dec),ℓ) are decoded
into narrowband speech, perceptually similar to the input speech signal.

The crucial property of the presented speech encryption system is its ability to descramble
enciphered parameters (ε̃(rec),ℓ, p̃(rec),ℓ, D̃(rec),ℓ) distorted by a voice channel. As the amount of
channel distortion goes up, so does the distortion of the resynthesized speech. As a result, we
obtain a progressive and controlled speech quality degradation without significant loss of intel-
ligibility. Preservation of intelligibility comes from the remarkable human tolerance to distorted
speech signals.
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5.2.1 Speech encoding

The speech encoder in the presented encryption scheme is essentially a harmonic speech encoder
that models speech signals as a combination of amplitude-modulated harmonics. The perceived
fundamental frequency of a harmonic speech signal is usually referred to as pitch, perceived signal
energy as loudness, whereas the spectral envelope is related to speech timbre.

The encoder operates sequentially on 20 ms speech frames of 160 samples with a 10 ms
look-ahead. Every frame is processed in the same manner, so we skip the frame indexation ℓ for
simplicity. A speech frame is firstly pre-emphasized with a first-order filter I(z) = 1 − 0.85z−1

to boost high-frequency signal components. It is then encoded into a set of 10 basic parameters: a
pitch period and an approximation of the spectral envelope expressed by 9 coefficients. The pitch
period expressed in samples per cycle is defined as:

p(init) := fs

f0
, (5.1)

where f0 is the estimated fundamental frequency of the harmonic structure of the speech signal
with fs = 8000 Hz being the sampling frequency. The spectral envelope is obtained from the
Power Spectral Density (PSD) on a moving window of 40 ms of speech signal with 20-ms offset
and 50% overlap. The PSD is windowed using 9 mel-scaled triangular filters shown in Figure 5.2,
resulting in 9 band-limited energies E1, ..., E9 such that their sum is close enough to the frame
energy:

ε(init) :=
9∑

i=1
Ei. (5.2)

It may be noticed that the vector of square roots of energy coefficients [
√

E1, ...,
√

E9]T can
be seen as a point on the non-negative part of the 9-dimensional hypersphere centered at 0. The
radius√ε(init) of the 8-sphere is related to the frame energy, whereas the normalized vector:

D(init) :=
[√

E1/ε(init), ...,
√

E9/ε(init)
]T

(5.3)

corresponds to the shape of the spectral envelope, i.e., speech timbre. Since a typical spectral
envelope consists of about 4 formants [Rabiner and Schafer, 2011], it is a reasonable assumption
that D(init) should capture the most relevant features in the speech spectrum.

The enciphering procedure requires the encoded pitch period and the signal energy to be boun-
ded by some predefined intervals [pmin, pmax] and [εmin, εmax]. Thus, if p(init) or ε(init) exceed
these intervals, they are thresholded to the closest bound. A selection of bounds is a compromise
between the dynamic range required for proper speech representation and its sensitivity to distor-
tion. Moreover, the lower energy bound εmin is slightly larger than 0, meaning that the scheme
could be unable to register some very low-amplitude sounds.

5.2.2 Enciphering

A blockwise scrambling is applied on the input parameters (p(init), ε(init), D(init)) defined over
the space of speech parameters into a new set (p̃(enc), ε̃(enc), D̃(enc)) defined over the space of
pseudo-speech parameters. Each of these parameters is critical for maintaining speech intelligi-
bility [Huang et al., 2001, Chap. 2], and hence contains information that could be exploited by a
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Figure 5.2 – Nine mel-scaled triangular spectral windows used in speech encoding. The amplitude
of two side filters is doubled to compensate their missing halves.

cryptanalyst to reconstruct the vocal message. For this reason, we consider them as equally salient.
Consequently, (p(init), ε(init), D(init)) are enciphered using a single, shared PRNG.

The enciphering of each frame requires a vector of 10 freshly-generated random integers ν =
[ν1, ... ν10]T , where ν3 belongs to the additive ring Z215 with 215 elements, ν10 belongs to Z217 ,
and the remaining coefficients belong to Z216 . These non-uniform ranges of values determine the
quantization resolution of the input parameters: p(init) and ε(init) are quantized using 216 levels,
and the vector D(init) is encoded by one of the 2128 possible values. Consequently, we obtain a
16-bit quantization per encoded coefficient, which is a reasonable resolution for encoding vocal
parameters. The vector ν can be efficiently computed from a sequence of 160 bits produced by
the PRNG. Given the random bits, the scrambling block splits the binary sequence into chunks of
length 15, 16 and 17 bits, and reads them as unsigned integers.

Figure 5.3 – Enciphering of the frame pitch period p(init) and the frame energy ε(init). From top
to bottom: Step 1: p(init) and log10(ε(init)) are linearly scaled and rounded to κ(init) and ϱ(init) in
Z216 . Step 2: κ(init) and ϱ(init) are translated by random ν1 and ν2 over Z216 to κ(enc) and ϱ(enc).
Step 3: κ(enc) and ϱ(enc) are linearly scaled to ε̃(enc) and p̃(enc) defined over the space of pseudo-
speech parameters.

Enciphering of pitch and energy is illustrated in Figure 5.3. The input pitch period p(init) is
linearly scaled into an interval [κlow, κhigh] such that 0 < κlow < κhigh < 216−1, and rounded to
the closest integer κ(init) ∈ Z216 . Similarly, the frame energy in logarithmic scale log10(ε(init)) is
transformed to ϱ(init) ∈ [ϱlow, ϱhigh]. Then, the obtained integers κ(init) and ϱ(init) are translated
respectively by ν1 and ν2 over the additive ring Z216 :
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κ(enc) = (κ(init) + ν1) mod 216 (5.4)

ϱ(enc) = (ϱ(init) + ν2) mod 216. (5.5)

Finally, the enciphered integers κ(enc) and ϱ(enc) are linearly scaled to p̃(enc) ∈ [p̃min, p̃max] and
ε̃(enc) ∈ [ε̃min, ε̃max].

Enciphering of D(init) ∈ S8 is based on the framework for scrambling spherical data described
in Chapter 4. The only difference is that enciphering is performed over the pre-image Pξ ⊂ R8 of
the torus mapping Φξ, where ξ = 1/

√
8[1, ..., 1]T ∈ R8. The result of enciphering is mapped to

S15, as shown in Figure 5.4.

Figure 5.4 – Enciphering of D(init). The scaled spherical coordinates 2γξ(D(init)) are quantized
by searching the closest lattice vector from Λ. The obtained χ(init) ∈ Λ is randomly translated by
a vector from the quotient Λ/(2πZ8/

√
8) over Pξ and mapped to D̃(enc) = Φξ(χ(enc)) on S15.

Let γξ(D(init)) = ξ⊙ γ8(D(init)) be a vector representing scaled spherical coordinates of the
vector D(init). It may be noticed that 2γξ(D(init)) (note the factor of 2) lies in the pre-image Pξ

of a flat torus Tξ. In the first step, the vector 2γξ(D(init)) is quantized by searching the closest
lattice point of a scaled Gosset lattice:

Λ = 2π

2k+1
√

8
Γ8, (5.6)

where k = 15 is the scaling factor. The quotient of nested lattices Λ/(2πZ8/
√

8) is associated
through the torus mapping Φξ to a spherical code C = Gσ ⊂ S15, where G is isomorphic to
Z215 ⊕ Z6

216 ⊕ Z217 and σ = 1/
√

8[1, 0, ... 1, 0]T ∈ R16 is the initial codeword in C .
Let χ(init) ∈ Λ be the closest lattice vector to 2γξ(D(init)). The vector χ(init) is translated by

a random vector:
χ(enc) = χ(init) + ν3β1 + ... + ν10β8, (5.7)

where β1, ..., β8 are the column vectors of the generator matrix BΛ:

BΛ =



2π/215 −2π/216 0 0 0 0 0 2π/217

0 2π/216 −2π/216 0 0 0 0 2π/217

0 0 2π/216 −2π/216 0 0 0 2π/217

0 0 0 2π/216 −2π/216 0 0 2π/217

0 0 0 0 2π/216 −2π/216 0 2π/217

0 0 0 0 0 2π/216 −2π/216 2π/217

0 0 0 0 0 0 2π/216 2π/217

0 0 0 0 0 0 0 2π/217
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and [ν3, ..., ν10]T ∈ Z215 ⊕Z6
216 ⊕Z217 is derived from the randomness of the PRNG. Finally, the

enciphered vector is mapped to the flat torus D̃(enc) = Φξ(χ(enc)).
The secrecy properties of D(init) enciphering presented in Chapter 4 remain unchanged due to

the equivalence between performing rotations on the flat torus Tξ and translations in the pre-image
Pξ, and the isomorphism between the group G and the quotient of lattices Λ/(2πZ8/

√
8).

5.2.3 Pseudo-speech synthesis

The last stage of speech encryption involves the synthesis of a ‘well-formed’ audio signal.
The role of audio synthesis is to enable an efficient transmission of the enciphered values
(p̃(enc), ε̃(enc), D̃(enc)) over a digital voice channel, and to prevent signal blockage by a VAD. Ro-
bust operation requires finding a tradeoff between producing a signal sufficiently speech-like yet
simple to encode and decode. Furthermore, the encoding procedure should comply with a typical
signal distortion characteristic introduced by a particular channel to benefit from distortion-tolerant
enciphering.

Since p̃(enc), ε̃(enc) and D̃(enc) represent the enciphered pitch period, the energy and the spec-
tral envelope of a speech frame, the natural approach is to relate these values with some homo-
logous parameters of an encrypted signal. Then, a perceptual distortion of the signal would be
proportionally mapped to the deciphered speech, to some extent reflecting the quality of the voice
channel used for transmission.

Every 25 ms frame of a pseudo-speech signal consists of three segments. The first and the
last 5 ms of a frame play the role of guard periods. The remaining 15 ms is where the enciphered
parameters are encoded. Once a frame is synthesized, it is windowed by a trapezoidal window and
concatenated in an overlap-then-add manner, as illustrated in Figure 5.5.

A 25 ms signal frame yt sampled at fs = 16 kHz contains the samples of a harmonic wave-
form:

y[n] =
K(ω0)∑
k=1

ηAk cos(kω0/fs · n + ϕk − kω0/fs · 80), n = 0, 1, ..., 399, (5.8)

where ω0 is the fundamental frequency, Ak are the amplitudes of harmonics, η is a real-valued
energy scaling factor, (ϕk − kω0/fs · 80) are the initial phases and K(ω0) is the number of harmo-
nics depending on ω0. Given the harmonicity of yt, the encoding of p̃(enc), ε̃(enc) and D̃(enc) es-
sentially reduces to a careful manipulation of ω0, Ak and ϕk. In addition, only the middle samples
y[80], ..., y[319] are involved in the encoding process. Once the harmonic parameters of the frame
are determined, the remaining part of yt is reproduced.

The encoding of enciphered parameters into yt is performed sequentially, starting from the
pitch, then the shape of the spectral envelope, and finally the energy. The most natural approach
for encoding the pitch is to assign ω0 := 2πfs/p̃(enc). Then, one may apply a classical open-loop
cross-correlation method [Rabiner and Schafer, 2011, Chap. 10, Gold et al., 2011, Chap. 31]
to extract p̃(enc) back from the received signal. In order to benefit from some off-the-shelf pitch
detectors, the value p̃(enc) should lie within the natural range of pitch values (50 Hz - 300 Hz).
Spectral shaping involves finding a proper relation between the amplitudes Ak and the initial
phases ϕk. Finally, the spectrally shaped frame is scaled to match the desired frame energy ε̃(enc) =∑319

n=80 y2[n].
Compared to encoding the pitch and the energy, mapping the vector D̃(enc) of length 16 into

the spectrum of yt seems to be less straightforward. It may be noticed that the fixed pitch and
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Figure 5.5 – Three 25 ms frames of a pseudo-speech harmonic signal. Every colored portion of the
waveform encodes a different set of enciphered parameters p̃(enc), ε̃(enc) and D̃(enc). The frames
are windowed using a trapezoidal window and overlapped, forming 5 ms guard periods.

energy put many constraints on the spectral envelope of the frame and the values ω0, Ak, and
ϕk. Despite this fact, it is desirable to keep the encoding and the decoding procedures of D̃(enc)
possibly independent from processing the pitch and the energy. Furthermore, it is required that a
proper data extraction from yt is possible for any combination of p̃(enc), ε̃(enc) and D̃(enc).

In order to overcome these limitations, we propose a slightly modified framework for encoding
D̃(enc). The encoding process relies on a bank of 16 adjacent spectral windows, illustrated in
Figure 5.6. The main idea of using these spectral windows is to encode each coordinate of D̃(enc)
into a frequency band associated to its respective spectral window. Unlike in speech encoding,
the windows are square-shaped, and linearly distributed between the 300-6700 Hz range. The
proposed selection of spectral windows aims to improve transmission robustness over a voice
channel rather than to capture the perceptually relevant spectral features. As a result, the proposed
framework is similar to using Frequency Division Multiplexing (FDM) [Weinstein and Ebert,
1971] for mitigating frequency fading.

Another difference is related to how the spectral windows are applied. Instead of windowing
the signal PSD as is the case in speech analysis, the windows are directly applied on the Discrete
Fourier Transform (DFT) of sampled yt. As will be explained later in the section, this change
significantly simplifies the encoding process. Besides, it seems better suited for data transmis-
sion over channels with an additive, independent noise such as AWGN because distortion would
linearly map to D̃(enc).

Shaping the spectrum of the harmonic frame yt can be achieved by a simultaneous manipula-
tion of the amplitudes and the initial phases of the harmonics. Thus, it is advantageous to consider
a complex-domain rewriting of yt, in which the amplitude Ak and the initial phase ϕk are merged
into a single complex term Ǎk = Ak exp(jϕk):

z[n] =
K(ω0)∑
k=1

Ǎk exp(n · jkω0/fs), n = 0, 1, ..., 239. (5.9)

The complex samples z[0], ..., z[239] correspond to respective samples y[80], ..., y[319] that en-
code the enciphered parameters.
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Figure 5.6 – Sixteen square-shaped spectral windows distributed uniformly over 300-6700 Hz.

Let Z be the column vector representing the DFT of samples z[0], ..., z[239]. The vector Z is
a sum of harmonic components:

Z =
K(ω0)∑
k=1

ǍkBT
(ω0),k, (5.10)

where B(ω0),k is a row vector representing the DFT of complex sinusoidal samples
exp(j2πnω0/fs) for n = 0, 1, ..., 239. The goal of the encoding process is to find Z =
[Z1, ..., Z240]T such that:

D̃(enc),k · ej 2π
16 k =

240∑
n=1

ZnHk,n, k = 1, ..., 16, (5.11)

where Hk = [Hk,1, ..., Hk,240] is a row vector representing the k-th spectral window sampled at
frequencies n

240 · fs for n = 0, 1, ..., 239. As a result, each element of D̃(enc) is represented by a
complex sum of windowed DFT samples. The predefined component exp(j2kπ/16) is inserted to
prevent the result of summation from being purely real and improve the time-domain waveform
shape of the synthesized pseudo-speech frame.

The summations in 5.10 and 5.11 can be expressed conveniently in a matrix form:

D̃(enc) ⊙W16 = HZ and Z = B(ω0)Ǎ, (5.12)

where W16 = [ej 2π
16 1, ej 2π

16 2, ..., ej 2π
16 16]T is the vector of the 16 roots of unity, H is a 16 × 240

matrix representing 16 spectral windows sampled over the frequency domain of Z, B(ω0) is a
240 ×K(ω0) matrix with columns B(ω0),k, Ǎ is the column vector of K(ω0) complex amplitudes
Ǎk as defined by (5.9), and ⊙ denotes the Hadamard product. As a result, we obtain a simple,
linear relation between D̃(enc) and the amplitudes of harmonics:

D̃(enc) ⊙W16 = HB(ω0)Ǎ (5.13)

The problem of finding Ǎ such that Equation 5.13 holds is under-determined, because K(ω0)
is larger than 16 by design. Instead, we can compute the least-square solution using the Moore-
Penrose pseudo-inverse:

Ă = (HBω0)†(D̃(enc) ⊙W16) (5.14)
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where (•)† denotes the pseudo-inverse operation. In order to improve computational efficiency,
the pseudo-inverse matrix (HBω0)† can be pre-computed and kept in a look-up table.

The least-square solutions obtained by the Moore-Penrose pseudo-inverse imply that the com-
puted magnitudes |Ăk| are small. It has a positive impact on the time-domain waveform shape,
minimizing the risk of producing high-amplitude peaks that are likely to be clipped during trans-
mission. Another advantage of the pseudo-inverse is its fast computation, suitable for real-time
processing.

Finally, we assign Ak := |Ăk| and ϕk := Arg(Ăk), and set the energy scaling factor η in
Equation 5.8 to match the desired energy ε̃(enc).

The remaining issue is extracting D̃(enc) from yt. The previously described encoding pro-
cess involved complex samples z[0], ..., z[239], where y[80 + n] = ηℜ(z[n]) and η is the pre-
viously computed scaling factor. Let Y be a column vector representing the DFT of samples
y[80], ..., y[319] computed over 240 points. From the general properties of Discrete Fourier Trans-
form we have:

Yn = η

2(Zn + Z̄241−n), n = 1, ..., 240, (5.15)

where Z̄241−n denotes the complex conjugate of Z241−n. Provided that Z is a sum of complex
sinusoids of frequency no larger than 6700 Hz, the values Zn for n > 120 are close to zero. As a
result, we can approximate the vector Y as:

Y ≈
{

η
2 · Zn, for n = 1, ..., 120,
η
2 · Z̄241−n, for n = 121, ..., 240.

(5.16)

Finally, the enciphered vector can be approximately retrieved by taking:

D̃(enc) ⊙W16 ≈
2
η

HY. (5.17)

We estimated the root mean squared error (RMSE) of D̃(enc) ⊙W16 approximations by si-
mulating a sequence of L = 10000 pseudo-speech frames from parameters (p̃(enc), ε̃(enc), D̃(enc))
selected randomly in every frame. We used the following formula:

RMSED̃ =

√√√√√ L∑
ℓ=1
∥D̃(enc),ℓ ⊙W16 − 2η−1

ℓ HYℓ∥2

L
,

where D̃(enc),ℓ is the ℓ-th encoded vector, Yℓ is a vector representing the DFT of the ℓ-th produced
pseudo-speech frame, and ηℓ is the respective scaling factor. The obtained error was 0.011, far
lower than an anticipated distortion introduced by the voice channel.

5.2.4 Signal transmission and analysis

Successful decoding of a synthetic signal produced by the pseudo-speech synthesizer requires a
high-precision, nearly sample-wise synchronization. Consequently, the presented speech encryp-
tion scheme is foremost suited for digital data storage and transmission over fully digital voice
communication systems like VoIP, in which a high level of synchronization can be maintained.
Upon reception, the signal analyzer processes sequentially the received signal frames and retrieves
enciphered parameters.
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Let ŷ[0], ..., ŷ[399] be the samples of some received pseudo-speech frame ŷt and let Ŷ be a
column vector of length 240 with the DFT of the sequence ŷ[80], ..., ŷ[319]. The received para-
meters p̃(rec) and ε̃(rec) are defined as:

p̃(rec) := 2πfs

ω̂0
, (5.18)

ε̃(rec) :=
319∑

n=80
ŷ2[n], (5.19)

where ω̂0 is the estimated fundamental frequency of the signal frame and fs = 16000 Hz is the
sampling frequency. If any of the values p̃(rec) and ε̃(rec) exceed the intervals [p̃min, p̃max] and
[ε̃min, ε̃max], they are tresholded to the closest bound.

The vector D̃(rec) is retrieved from Ŷ in two steps. Firstly, we compute the normalized real-
valued sum of the windowed DFT:

D̂(rec) :=
ℜ
(
2HŶ⊙ W̄16

)
∥∥∥ℜ (2HŶ⊙ W̄16

)∥∥∥ , (5.20)

where W̄16 = [e−j 2π
16 1, e−j 2π

16 2, ..., e−j 2π
16 16]T and ℜ(2HŶ ⊙ W̄16) is the real component of

2HŶ⊙W̄16. Then, the vector D̂(rec) is projected to D̃(rec) on the flat torus Tξ using Formula 4.19
in Section 4.6.6.

5.2.5 Deciphering

Given the set of received parameters (p̃(rec), ε̃(rec), D̃(rec)), the descrambling algorithm reverses
enciphering operations using the same vector ν = [ν1, ..., ν10]T of random integers produced by
the PRNG. The values p̃(rec) and log10(ε̃(rec)) are firstly linearly scaled to κ(rec) and ϱ(rec) over
the interval [0, 216−1]. Unlike in the enciphering stage, these values are not quantized. In the next
step, κ(rec) and ϱ(rec) are deciphered by respective translations −ν1 and −ν2 modulo 216:

κ(dec) = (κ(rec) − ν1) mod 216 (5.21)

ϱ(dec) = (ϱ(rec) − ν2) mod 216, (5.22)

where ν1, ν2 ∈ Z216 are obtained from the PRNG. If the values κ(dec) and ϱ(dec) ex-
ceed the respective intervals [κlow, κhigh] and [ϱlow, ϱhigh], they are tresholded to the closest
bound. In the last step, the values are transformed back into the intervals [pmin, pmax] and
[log10(εmin), log10(εmax)] representing the domain of speech parameters.

The deciphering of the unit vector D̃(rec) is done by translating χ(rec) = Φ−1
ξ (D̃(rec)):

χ(dec) = χ(rec) − ν3β1 − ...− ν10β8 mod 2π√
8

, (5.23)

where β1, ..., β8 are the columns of BΛ, [ν3, ..., ν10]T is a random vector obtained from the PRNG,
and the modulo operation is done element-wise. Let φ(dec) =

√
8χ(dec)/2. If any of the angles is

φ(dec) = [φ(dec),1, ..., φ(dec),7] is larger than π/2, it is replaced by φ(dec),i := π/2− φ(dec),i. The
deciphered spectral envelope vector is D(dec) = γ−1

8 (φ(dec)).
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Figure 5.7 – Overview of the narrowband LPCNet architecture. The symbol z−1 denotes a one-
sample delay.

5.2.6 Speech resynthesis

The output of the descrambling process is a sequence (p(dec),ℓ, ε(dec),ℓ, D(dec),ℓ) representing har-
monic parameters of 20 ms speech frames. The final speech resynthesis is possible with any adap-
ted speech synthesizer supporting harmonic speech parametrization. An example of a suitable
narrowband harmonic speech synthesizer is Codec2. 2

Unfortunately, although parametric sinusoidal speech coders succeed in producing intelligible
speech, they often struggle to maintain satisfactory speech quality. In this work, we improve
upon harmonic speech synthesis by using our own modification of the LPCNet, a Machine Lear-
ning (ML) based synthesizer introduced by Jean-Marc Valin (Mozilla) and Jan Skoglund (Google
LLC) [Valin and Skoglund, 2019]. Unlike the original LPCNet which operates on wideband speech
signals sampled at 16 kHz, our modified synthesizer produces narrowband speech signal sampled
at 8 kHz. We also modified the input of the LPCNet to make it compatible with the vocal parame-
ters that we use in our speech encryption algorithm. Finally, we extended the training procedure
of neural networks in order to improve the robustness of the LPCNet against distortion introduced
by a voice channel.

The narrowband LPCNet recreates the samples of a speech signal s[n] from a sum of the linear
prediction s̃[n] and the excitation e[n]:

s[n] = s̃[n] + e[n] (5.24)

s̃[n] =
12∑

k=1
αks[n− k], (5.25)

where α1, ..., α12 are the 12-th order linear prediction coefficients (LPC) for the current frame.
The excitation samples e[n] are produced by two concatenated neural networks that model an
excitation signal from the input vocal parameters.

Figure 5.7 depicts a simplified diagram of the modified narrowband LPCNet algorithm. The
speech synthesizer combines two recurrent neural networks: a frame-rate network processing
20 ms speech frames (160 samples) and a sample-rate network operating at 8 kHz. Network archi-
tectures are presented in Figure 5.8. The frame-rate network takes as input the sequence of feature

2. https://rowetel.com

https://rowetel.com
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vectors computed from (p(dec),ℓ, ε(dec),ℓ, D(dec),ℓ) and produces a sequence of frame-rate condi-
tioning vectors fℓ of length 128. Vectors fℓ are sequentially forwarded to the sample-rate network
and padded with last value to get a frame with 160 samples.

The role of the sample-rate network is to predict the multinomial probability distribution of the
current excitation sample Pr(e[n]), given the current conditioning vector fℓ, the previous signal
sample s[n−1], the previous excitation sample e[n−1] and the current prediction s̃[n]. The current
excitation sample e[n] is obtained by randomly generating a single sample from Pr(e[n]). The
synthesis output of the narrowband LPCNet are pre-emphasized speech samples s[n] = s̃[n]+e[n],
filtered with a de-emphasis filter J(z) = 1

1−0.85z−1 . The operation of the narrowband LPCNet
algorithm stops when the last feature vector is processed, and the sample-rate network synthesizes
the last speech frame.

Computing a feature vector from a set of vocal parameters (p(dec),ℓ, ε(dec),ℓ, D(dec),ℓ) requires
few steps. Let Eℓ = ε(dec),ℓ ·D(dec),ℓ⊙D(dec),ℓ be a vector representing 9 band-limited energies of
the ℓ-th encoded speech frame. Then, the ℓ-th feature vector has the form [Cℓ,0, Cℓ,1, ..., Cℓ,8, ρℓ]T ,
where Cℓ,0, Cℓ,1, ..., Cℓ,8 is the discrete cosine transform (DCT-II) of the sequence log10(Eℓ,1), ...,
log10(Eℓ,9), and where ρℓ = (p(dec),ℓ − 100)/50 is the scaled pitch period. Taking into conside-
ration the mel-scaled distribution of spectral windows used in the speech encoder, the coefficients
Cℓ,0, Cℓ,1, ..., Cℓ,8 can be viewed as 9-band Mel-Frequency Cepstral Coefficients (MFCC).

The prediction samples s̃[n] are computed from the predictor coefficients α̃1, ..., α̃12 obtai-
ned from Eℓ and updated for every frame. The mel-scaled windowed energies in Eℓ are firstly
interpolated into a linear-frequency PSD and then converted to an autocorrelation using an in-
verse FFT. The LPC coefficients are obtained from the autocorrelation using the Levinson-Durbin
algorithm [Makhoul, 1975].

Figure 5.8 – Architectures of the frame-rate (left) and the sample-rate (right) networks. The
frame network consists of two convolutional layers with a filter of size 3, followed by two fully-
connected layers. The output of the convolutional layers is added to an input connection. The
sample-rate network firstly concatenates four inputs and passes the resulted combination to two
gated recurrent units (GRUA of size 384 and GRUB of size 16), followed by a dual fully connected
layer [Valin and Skoglund, 2019]. The output of the last layer is used with a soft-max activation.
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Obtaining α̃k from the low-resolution bands is different than in the classical approach, in which
the autocorrelation and the predictor αk are computed directly from speech samples [Rabiner and
Schafer, 2011, Chap. 9]. Figure 5.9 displays a frequency response of two predictors obtained
from the same pre-emphasized speech frame using both estimation methods. Despite a substantial
difference between the responses, the sample-rate network in the narrowband LPCNet learns to
compensate, as pointed out in [Valin and Skoglund, 2019].

0.0 1.0 2.0 3.0 4.0
0

1

2

frequency (kHz)

Figure 5.9 – Frequency response of a 12-th order predictor αk derived from the autocorrelation of
160 pre-emphasized speech samples (blue line) and a frequency response of a 12-th order predictor
α̃k derived from the mel-scaled energy bands of the same speech frame by the narrowband LPCNet
(red line). Despite the significant difference between the two spectra, the sample-rate network of
the narrowband LPCNet is trained to compensate the difference without degrading the speech
quality.

5.3 Discussion

This section discusses several aspects associated with system security, tolerance to channel distor-
tion, selection of system parameters, and the training the neural networks in the speech synthesizer.

5.3.1 Security considerations

The security of the proposed speech encryption scheme cannot be rigorously proved without an
in-depth specification, which may significantly differ in particular implementations. Instead, we
provide an informal justification for the asymptotic indistinguishability of encryptions in an ex-
periment comparable with the classical adversarial indistinguishability challenge presented in De-
finition 4.4.3 in Section 4.4. The encryptions are indistinguishable when a secure binary pseudo-
random number generator with a fresh seed taken uniformly at random is adequately implemented.

Let L and l be polynomials, λ be an integer-valued security parameter, xt be an arbitrary
speech signal of finite duration t ∈ [0, 320L(λ)), RandGen be a binary pseudo-random number
generator and s ∈ {0, 1}l(λ) be a random seed. In addition, let Π = (RandGen, Enc, Dec) be the
speech encryption scheme described in Section 5.2, where Enc takes as an input the speech signal
xt and a vector r← RandGen(s) such that r ∈ {0, 1}160L(λ), and outputs a synthetic signal yt =
Encr(xt) of the same duration as xt. Furthermore, let us define an adversarial indistinguishability
challenge PrivKeav

A,Π(λ):
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Definition 5.3.1. The adversarial indistinguishability challenge PrivKeav
A,Π(λ) is defined as:

1. The adversary A is given input 1λ, and he chooses a pair of distinct signals x0,t, x1,t of
finite duration t ∈ [0, 320L(λ)).

2. A random seed s is chosen and a sequence r is generated by running RandGen(s). The
challenge yt = Encr(xb,t) is given toA, where b ∈ {0, 1} is chosen uniformly at random.

3. A outputs bit b′.

4. The output of the challenge is 1 if b = b′ and 0 otherwise.

Below we present a proposition for the indistinguishability of encryptions in the presence of an
eavesdropper and provide the sketch of the proof.

Proposition 5.3.1. Let Π = (RandGen, Enc, Dec) be the speech encryption scheme described in
Section 5.2. There is a negligible function negl such that for any PPT adversary A it holds:

Adv(A(1λ)) =
∣∣∣∣Pr(PrivKeav

A,Π(λ) = 1)− 1
2

∣∣∣∣ ≤ negl(λ).
Sketch of Proof.

Firstly, we can observe that the security of the speech encryption scheme does depend
neither on the speech analysis nor the pseudo-speech synthesis algorithms. Indeed, the single
output of the speech encoder is a sequence of parameters {(ε(init),ℓ, p(init),ℓ, D(init),ℓ)}

L(λ)
ℓ=1 ,

which is forwarded to the scrambling block. The result of enciphering is a new sequence
{(ε̃(enc),ℓ, p̃(enc),ℓ, D̃(enc),ℓ)}

L(λ)
ℓ=1 , being the single input of the pseudo-speech synthesizer. In

consequence, the indistinguishability of the synthetic pseudo-speech signal yt reduces to the in-
distinguishability of the enciphered sequence from any sequence taken uniformly at random.

The enciphering of the initial speech parameters is done using a sequence of scrambling vec-
tors {νℓ}

L(λ)
ℓ=1 , where νℓ ∈ Z2

16 ⊕Z15 ⊕Z6
16 ⊕Z17 and {vℓ}

L(λ)
ℓ=1 produced from r by sequentially

reading short bitstrings as unsigned integers. We can easily show that if the binary pseudo-random
generator RandGen is secure, then the resulting sequence {vℓ}

L(λ)
ℓ=1 is indistinguishable from any

sequence {v∗ℓ}
L(λ)
ℓ=1 produced from a random binary sequence r∗ ∈ {0, 1}160L(λ) output by the true

entropy collector TrueRandGen.
The rest of the proof essentially repeats the reasoning from Lemma 4.6.2 and Lemma 4.6.3.

Let Π̃ = (TrueRandGen, Enc, Dec) be a new encryption scheme. In a first step, we
may prove that the result of enciphering {(ε̃∗(enc),ℓ, p̃∗(enc),ℓ, D̃∗(enc),ℓ)}

L(λ)
ℓ=1 with a random se-

quence {ν∗ℓ}
L(λ)
ℓ=1 obtained from TrueRandGen is perfectly secure, i.e., the enciphered values

{ε̃∗(enc),1, p̃∗(enc),1, D̃∗(enc),1, ε̃∗(enc),2, ..., D̃∗(enc),L(λ)} are generated independently from uniform
distributions over their respective discrete domains. Consequently, we get:

Pr(PrivKeav
A,Π̃(λ) = 1) = 1

2 .

Then, we can show the indistinguishability of the sequence {(ε̃(enc),ℓ, p̃(enc),ℓ, D̃(enc),ℓ)}
L(λ)
ℓ=1 by

contradiction: the existence of a PPT adversary A who distinguishes the sequence from purely
random with a non-negligible advantage implies the existence of a PPT distinguisher D breaking
the security of RandGen. From this, we conclude that there is a negligible function negl such
that the advantage of any PPT adversary A participating in the experiment PrivKeav

A,Π is at most
Adv(A(1λ)) < 0.5 + negl(λ).
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Proposition 5.3.1 states that the encryption scheme produces indistinguishable encryptions in
the presence of an eavesdropper, provided that every speech signal is enciphered using a secure
pseudo-random bit generator with a fresh and uniformly distributed random seed. However, selec-
ting a proper binary pseudo-random generator is far from being trivial and should be done very
carefully. In particular, it is not evident if a ‘good’ bit generator can always be adequately trans-
formed into a non-binary generator and vice-versa. For instance, in [Baigneres et al., 2007] it is
shown that a poorly designed non-binary sequence expanded into a bitstream could pass a ran-
domness test by some bit-oriented distinguishers. Some statistical test suitable for checking the
randomness of non-binary ciphers can be found in [Baigneres et al., 2007, Epishkina, 2018]

The selection of a suitable pseudo-random number generator is out of the scope of this work.
Nevertheless, some promising candidates of binary pseudo-random number generators can be
found in the NIST Special Publication 800-90A [Barker et al., 2015]. Crucially, the presented
generators are evaluated for their potential use as non-binary number generators over integer rings
Z2n , n ∈ N. An example of such a generator uses Advanced Encryption Standard (AES) in the
CTR mode of operation and a secret 256-bit seed. The generator is claimed to securely produce
up to 248 bitstrings of length 219 if the input seed is taken uniformly at random. Furthermore,
the input seed is updated after every request for backtracking resistance. The maximum bitstring
length 219 in a unique request is sufficient to encipher more than one minute of one-way voice
communication. Finally, a parallelization of bitstring generation provided by the CTR mode is an
advantage in real-time operation.

An obvious weakness of the presented scheme is the lack of mechanisms providing data in-
tegrity. Since the enciphered speech signal does not include any side information, the recipient
cannot verify the source and received data correctness. Moreover, it is not clear whether a reliable
data integrity mechanism even exists in this lossy framework, given that the received signal is
likely to differ from the initial signal and that malleability-by-design is one of the basic features
of the presented speech encryption scheme. Instead, it is important to ensure the proper authenti-
cation of the users and secure exchange of cryptographic keys (or secret seeds) before the session
starts [Canetti and Krawczyk, 2001, Katz and Lindell, 2015, Chap. 10]. Some solutions include
mutual authentication using public certificates or symmetric pre-shared keys [Rescorla, 2018,Bar-
ker, 2020]. This problem is covered in more detail in Chapter 6.

Despite the absence of data integrity in real-time communication, an adversarial manipulation
on encrypted speech giving a meaningful deciphered speech is technically challenging. Synthe-
tic signal fragility and high synchronization requirements between the legitimate users suggest
that the attacker is more likely to interrupt the communication. However, such an interruption is
effectively not much different from signal blockage by a VAD.

If the enciphered speech signal is stored, a binary representation of the signal in PCM or a
compressed form should be accompanied by a message authentication code (MAC) [Katz and
Lindell, 2015, Chap. 5] computed with a dedicated authentication key.

5.3.2 Tolerance to signal distortion and large deciphering errors

Let yt be an encrypted speech signal sent over a voice channel, and ŷt be the signal recei-
ved by the recipient. Due to channel distortion, parameters (ε̃(rec),ℓ, p̃(rec),ℓ, D̃(rec),ℓ) extracted
from ŷt usually diverge from the enciphered sequence (ε̃(enc),ℓ, p̃(enc),ℓ, D̃(enc),ℓ). The trans-
mission error propagates during descrambling, causing a deciphering error between the initial
(ε(init),ℓ, p(init),ℓ, D(init),ℓ) and deciphered (ε(dec),ℓ, p(dec),ℓ, D(dec),ℓ) values.
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When the distortion is low, transmission and deciphering errors are related by inequalities:∣∣∣∣∣log10

(
ε(init),ℓ
ε(dec),ℓ

)∣∣∣∣∣ ≤
(

216

ϱhigh − ϱlow

log10(εmax/εmin)
log10(ε̃max/ε̃min)

)
·
∣∣∣∣∣log10

(
ε̃(enc),ℓ
ε̃(rec),ℓ

)∣∣∣∣∣ (5.26)

∣∣∣p(init),ℓ − p(dec),ℓ

∣∣∣ ≤ ( 216

κhigh − κlow

pmax − pmin

p̃max − p̃min

)
·
∣∣∣p̃(enc),ℓ − p̃(rec),ℓ

∣∣∣ (5.27)∥∥∥D(init),ℓ −D(dec),ℓ

∥∥∥ ≤ π√
2
·
∥∥∥D̃(enc),ℓ − D̃(rec),ℓ

∥∥∥ , (5.28)

where | • | is the modulus and ∥ • ∥ denotes the Euclidean norm. In consequence, the deciphering
procedure is distortion-tolerant with respect to parameters log10(ε̃(enc),ℓ), p̃(enc),ℓ and D̃(enc),ℓ,
with three independent expansion factors.

The distortion-tolerant property with respect to pseudo-speech parameters holds unless
the amount of distortion in the received signal ŷt becomes too large. When the values
| log10(ε̃(enc),ℓ/ε̃(rec),ℓ)|, |p̃(enc),ℓ − p̃(rec),ℓ| and ∥D̃(enc),ℓ − D̃(rec),ℓ∥ exceed some specific thre-
sholds, there is a risk of a deciphering error much larger than indicated by the bounds. These
large deciphering errors are perceived by the listener as unpleasant flutter degrading the overall
perceived speech quality, and should be avoided.

A strong perceptual speech degradation is usually related to large deciphering errors of
energy or pitch. In the example depicted in Figure 5.10, a silent speech frame with the energy
ε(init) = εmin is enciphered to ε̃(enc) and sent over a noisy channel in a form of a pseudo-speech
frame. Upon reception, the recipient observes ε̃(rec) such that | log10(ε̃(rec)/ε̃(enc))| > ϱlow/216.
However, the result of deciphering is ε(dec) = εmax, the exact opposite of the initial value.

It may be noticed that deciphering error making a silent frame maximally loud is more da-
maging for perceptual quality than suppressing a loud frame into silence. A varying perceptual
impact of deciphering errors is the main justification for fine-tuning the guard bounds for pitch
and energy. Nevertheless, in order to maintain a robust operation of the enciphering scheme, it is
important to ensure experimentally that the values | log10(ε̃(rec),ℓ/ε̃(enc),ℓ)| and |p̃(rec),ℓ− p̃(enc),ℓ|
stay within the guard limits with the high probability.

Figure 5.10 – Large deciphering error of energy due to excessive distortion.
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Another kind of a deciphering error occurs while processing the spectral envelope of a pseudo-
speech frame D̃(enc),ℓ. As mentioned in Chapter 4, channel distortion may cause the received
D̂(enc),ℓ ∈ S15 to move away from the flat torus Tξ. When the distance from the flat torus over-
reaches

2 sin

sin−1
(
1/
√

8
)

2

 , (5.29)

the vector D̂(enc),ℓ could be projected to D̃(rec),ℓ on the opposite side of the torus. Figure 5.11
illustrates a simplified scenario of a wrong projection in R4. The projection of the vector D̃(enc)
to D̃(rec) along one dimension of the torus can be viewed as translation of the corresponding
coordinate of χ(enc) = Φ−1

ξ (D̃(enc)) in the pre-image of the torus. A wrong projection causes an
unpredictable change in the spectral envelope of the deciphered frame.

When the channel distortion is sub-proportional to the logarithm of signal energy, the risk of
a projection going on the wrong side of the torus can be mitigated by increasing the minimum
pseudo-speech frame energy ε̃min. It is because the norm in the denominator of Equation 5.20
goes up when ε̃min is increased, making the error ∥D̃(enc),ℓ − D̃(rec),ℓ∥ relatively smaller.

Figure 5.11 – Projection of D̃(enc) to the opposite side of the flat torus T[ξ1,ξ2] along single dimen-
sion, seen as translation by πξ2 in the pre-image of the torus.

5.3.3 Selection of bounds for the signal parameters

A selection of good bounds for the speech parameters [pmin, pmax], [εmin, εmax], pseudo-speech
parameters [p̃min, p̃max], [ε̃min, ε̃max], and guards [κlow, κhigh], [ϱlow, ϱhigh] is a tradeoff bet-
ween a sufficient dynamic range for the encoding and a good robustness to channel distortion.
When channel distortion is insignificant, the risk of large deciphering errors is nearly negligible.
Then, in compliance with Inequalities 5.26-5.28, it is advantageous to enlarge [p̃min, p̃max] and
[ε̃min, ε̃max], and reduce the guard regions. As the distortion goes up, the guard regions and ε̃min

should be adequately increased, and the intervals [pmin, pmax], [εmin, εmax] slightly limited. This
can be done adaptively depending on fluctuating channel characteristics.

Another factor is pitch detection accuracy in the pseudo-speech analyzer. Voice-oriented pitch
estimators analyze the signal assuming small pitch variation over time [Szczerba and Czyzewski,
2005,Rabiner and Schafer, 2011, Chapter 10]. However, the assumption is not valid in an encryp-
ted signal for which the pitch period changes randomly every 20 ms.

The two most common types of pitch estimation errors in noisy signals are transient errors,
and octave errors [Beauchamp et al., 1993]. A transient error occurs when an abrupt change of
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fundamental frequency within a speech frame violates the stationarity assumption. An octave er-
ror describes a situation when the predictor incorrectly outputs a multiple kω0 or a fraction 1/kω0
(k ∈ N) of the correct fundamental frequency ω0. These errors are mitigated by pitch tracking [Be-
nesty et al., 2008, Chap. 10]. However, since the pitch period in the encrypted signal is uncorrelated
in time, pitch tracking seems redundant if not harmful in our case as it would smooth the recei-
ved values. Instead, it is essential to maintain frame synchronization and ensure that neither the
adjacent frames nor the guard periods damage the pitch estimation.

Octave errors usually exceed guard intervals, leading to performance loss. Thus, it may be
worth selecting the limits [p̃min, p̃max] such that p̃max ≤ 2p̃min. For example, [p̃min, p̃max] =
[80, 160] ([ω̃min, ω̃max] = [100 Hz, 200 Hz]) seems to be a reasonable tradeoff between the
range of possible pitch values and the robustness against octave errors.

5.3.4 The narrowband LPCNet training data

The quality of synthesized speech strongly depends on the capability of the narrowband LPCNet
algorithm to operate in more imperfect conditions than during the training [Valin and Skoglund,
2019]. As suggested in [Oord et al., 2016], it is possible to improve the robustness of the network
by adding noise during the training stage.

In our speech encryption scheme, there exist two independent sources of imperfections. The
first source is the lower quality of real-world speech recordings taken for encryption, and the
second source is channel distortion. Motivated by this fact, the training process of the narrowband
LPCNet was divided into two stages. During the two-step training, the ML networks consecutively
learn to cope with the non-idealities of speech signals and the transmission channel. Splitting
the training overcomes several typical problems with learning convergence as when the network
cannot effectively compensate for both kinds of distortion at the same time. Moreover, it seems to
be more practical if one considers re-training the network to different channel conditions.

The first training stage is identical to the training process described in [Valin and Skoglund,
2019]. During the training, the network learns to predict the excitation sequence e[n], using as
input the previous excitation samples e[n − 1], the previous signal samples s[n − 1], the current
prediction samples s̃[n] and the frame-rate speech features (9-band Bark-scale cepstral coeffi-
cients, pitch). A diagram for producing the training data is shown in Figure 5.12. Except for the
frame features, the input data is µ-law quantized by the Q block [ITU-T, 1988f]. The input noise
is injected into the speech signal in the µ-law domain to make it proportional to signal amplitude.
Noise distribution varies across the training data from no noise to a uniform distribution in the
[-3,3] range. This injected noise results in a -10 dB to 30 dB SNR in the speech signals used for
training. It can be noticed that the injected noise propagates to all sample-rate input data and thus
prevents the undesirable situation when the LPCNet models noise with the same shape as the LPC
synthesis filter. Therefore, the training process with injected noise helps the network learn to insert
a proper dither noise into a synthesized signal [Jayant and Rabiner, 1972, Zorila et al., 2012].

After the first training stage, the network can produce intelligible speech signals from noise-
less feature vectors. However, the output of the speech encryption scheme is likely to be distorted.
The second stage of the training simulates a scenario when the frame-rate features are transmitted
in encrypted form over a voice channel. The input speech signal is fully encrypted with a given
random sequence to yt, as illustrated in Figure 5.13. The injected distortion simulates a typical er-
ror introduced by a particular voice channel (i.e., Gaussian noise or speech compression). Finally,
a distorted signal ŷt is decrypted, and distorted parameters are fed into the network.
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The major issue with the distortion injection model in Figure 5.13 is its computational cost
associated with processing the training data. Since channel distortion is independent of the input
signal, and the reception error linearly propagates to deciphered values, it is possible to inject dis-
tortion directly into the speech parameters, as in Figure 5.14. The distribution of injected distortion
simulates channel distortion statistics obtained by simulations or measurements.

The two-stage training of the networks on a GPU card Nvidia Quadro RTX 4000 and using
one hour of training speech takes approximately five days. Furthermore, we experimented with
the speech quality produced by the synthesizer trained to English or Japanese 3 language. The
results obtained suggest that the synthesizer should be trained to the language used later for secure
communication.

Figure 5.12 – Computing the training data with noise injection in the first training stage to simulate
a noisy recording. The Q block denotes µ-law quantization and Q−1 denotes conversion from µ-
law to the linear domain. The prediction filter s̃[n] =

∑12
k=1 ãkz−k is applied to the noisy and

quantized input. The excitation samples e[n] are the difference between the clear speech samples
s[n] and the predicted ones. The symbol z−1 denotes a one-sample delay.

Figure 5.13 – Computing the training data with noise injection in the second training stage to
simulate a voice channel with distortion (on the top) and a noisy reception (at the bottom). The
diagram simulates encryption of speech parameters with the given random sequence and transmis-
sion over a voice channel with predefined distortion. The symbol z−1 denotes a one-sample delay.

3. Japanese has a very simple phonology, that makes it particularly useful for experimenting with ML techniques.
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Figure 5.14 – Equivalent diagram for computing the training data with noise injection in the second
training stage. The second distortion simulating a voice channel is injected directly into speech pa-
rameters. The distribution of distortion simulates distortion introduced by a transmission channel
and can be obtained by simulations or experiments. The symbol z−1 denotes a one-sample delay.

5.4 Evaluation

This section presents the test results from some experiments with our speech enciphering algo-
rithm. The tests verify the scheme’s capability to decrypt distorted pseudo-speech signals. Fur-
thermore, the section investigates a scenario when the receiver is not fully synchronized in time
and amplitude with the sender. The simulations are validated by real-world experiments.

Based on some measurements of a signal distortion introduced by FaceTime and Skype in the
audio mode, we estimated the SNR in a typical VoIP-based voice channel to be between 10 dB and
15 dB. On the other hand, similar experiments with 3G networks revealed that signal distortion in
cellular networks is much higher, and gives SNR values closer to 3-5 dB. Due to excessive distor-
tion in cellular networks and erratic speech quality, we decided to evaluate our encryption scheme
for its compatibility with VoIP-based applications. The robustness of deciphering was evaluated by
inserting additive white Gaussian noise (AWGN) into an encrypted signal or compressing the en-
crypted signal with Opus-Silk 1.3.1 [Valin et al., 2012]. Opus-Silk was chosen for experimentation
because, unlike AMR or Speex, its compression rate can be easily adjusted.

The precomputed encrypted signal was successfully sent over FaceTime between two
iPhones 6 running iOS 12 connected to the same domestic WiFi network and decrypted offline.
The use of FaceTime on WiFi is justified by high connection stability (limited drop-outs, constant
delay) which greatly simplifies signal synchronization at the receiving end. Additionally, the se-
lected speech excerpts reconstructed from encrypted signals were evaluated in a speech quality/in-
telligibility assessment on a large group of about 40 participants.

The section concludes with computational analysis in Section 5.4.4. The system’s computatio-
nal complexity was estimated by measuring all floating-point operations performed during running
our experimental software. The measurements suggest that the computationally optimized encryp-
tion algorithm may operate in real-time on high-end portable devices.

Selected initial, encrypted, distorted, and decrypted speech samples are available online. 4

4. https://github.com/PiotrKrasnowski/Speech_Encryption

https://github.com/PiotrKrasnowski/Speech_Encryption
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5.4.1 Experimental setup

Tables 5.1 and 5.2 present the encoding parameters of speech and pseudo-speech signals. The
intervals [εmin, εmax] and [pmin, pmax] were obtained from the TSP English speech corpus. 5 The
selection of the intervals [ε̃min, ε̃max], [p̃min, p̃max] and the bounds [κlow, κhigh], [ϱlow, ϱhigh]
was done based on simulations.

The speech encryption and decryption algorithms were implemented mainly in Python. The
speech encoder and the speech synthesizer were obtained from the LPCNet repository 6 and
adapted to the scheme. The pitch prediction with tracking for speech was based on open-loop
cross-correlation search [Rabiner and Schafer, 2011, Chapter 10], whereas prediction for pseudo-
speech relies on a more accurate maximum-likelihood estimator 7 without tracking [Nielsen et al.,
2017,Nielsen et al., 2014]. In the simulations, the enciphering stage takes as input a given pseudo-
random bitstring produced by a built-in NumPy 8 PCG-64 generator, a 128-bit implementation of
Melissa O’Neill’s permutation congruential algorithm [O’Neill, 2014].

Table 5.1 – Parameters used for speech encoding and synthesis.
Parameter Value

frame length 20 ms
sampling frequency 8 kHz

sample representation int16
energy bounds (εmin, εmax) = (10, 108)

pitch period bounds (pmin, pmax) = (16, 128)
energy guard bounds (ϱlow, ϱhigh) = (213, 216 − 213 − 1)
pitch guard bounds (κlow, κhigh) = (213, 216 − 213 − 1)

Table 5.2 – Parameters used for pseudo-speech encoding and synthesis.
Parameter Value

frame length 25 ms
guard period 5 ms

sampling frequency 16 kHz
sample representation int16

energy bounds (ε̃min, ε̃max) = (109, 1010)
pitch period bounds (p̃min, p̃max) = (80, 160)

The narrowband LPCNet was trained in two steps on one hour of speech from the multi-
speaker TSP English corpus (12 male and 12 female speakers). In the second step of the training,
inserted distortion simulated a white Gaussian noise at SNR = 20 dB. Each network was trained
for 100 epochs per training step, with a batch consisting of 64 speech sequences of 300 ms. The
training was performed on a GPU card Nvidia Quadro RTX 4000 with Keras 9 and Tensorflow 10

using the CuDNN GRU implementation. The selected optimization method was AMSGrad [Reddi
et al., 2018] with a step size α = α0

1+δ·b , where α0 = 0.001, δ = 5×10−5 and b is the batch number.

5. https://www-mmsp.ece.mcgill.ca/Documents/Data/
6. https://github.com/mozilla/LPCNet/
7. https://github.com/jkjaer/fastF0Nls/
8. https://numpy.org/
9. https://keras.io/

10. https://www.tensorflow.org/

https://www-mmsp.ece.mcgill.ca/Documents/Data/
https://github.com/mozilla/LPCNet/
https://github.com/jkjaer/fastF0Nls/
https://numpy.org/
https://keras.io/
https://www.tensorflow.org/
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5.4.2 Simulations
The first experiment tested the encryption and decryption operations, assuming noise-less trans-
mission. In the example in Figure 5.15, the time-domain envelopes of the initial and the recons-
tructed speech sentence are very similar. A high degree of similarity can also be observed in the
spectrograms presented in Figure 5.16. It may be noticed that the trained speech synthesizer faith-
fully reconstructs the fundamental frequency and the formants of the initial speech. On the other
hand, the encrypted signal in the time and the frequency domains resembles band-limited noise.

Adding distortion into the encrypted signal degrades the decrypted speech. The time-domain
envelope of the decrypted speech sentence in Figure 5.17 is still similar to the initial speech but
not identical anymore. It may be observed that pseudo-speech decryption has a denoising effect
on low-amplitude speech and silence.

The reception and deciphering errors of the same speech sentence are depicted in Figure 5.18.
As can be seen, the errors on energy and timbre are non-negligible. However, in contrast to the er-
ror |ϱ(init),ℓ−ϱ(dec),ℓ|, the impact of the error ∥D(init),ℓ−D(dec),ℓ∥ on decrypted speech perception
is more unpredictable. Unlike energy and timbre, pitch is very well preserved.

The scheme’s robustness has been tested against AWGN at SNR between 5-25 dB and Opus-
Silk v1.3.1 compression at bitrates between 28-64 kbps. In each case, the error of received and
deciphered parameters were expressed in terms of the RMSE defined as:

RMSEε̃,(rec) =

√√√√√ L∑
ℓ=1
|ϱ(enc),ℓ − ϱ(rec),ℓ|2

L
, RMSEε,(dec) =

√√√√√ L∑
ℓ=1
|ϱ(init),ℓ − ϱ(dec),ℓ|2

L
,

RMSEp̃,(rec) =

√√√√√ L∑
ℓ=1
|κ(enc),ℓ − κ(rec),ℓ|2

L
, RMSEp,(dec) =

√√√√√ L∑
ℓ=1
|κ(init),ℓ − κ(dec),ℓ|2

L
,

RMSED̃,(rec) =

√√√√√ L∑
ℓ=1
∥D̃(enc),ℓ − D̃(rec),ℓ∥2

L
, RMSED,(dec) =

√√√√√ L∑
ℓ=1
∥D(init),ℓ −D(dec),ℓ∥2

L
.

As shown in Figure 5.19, RMSEε,(dec) and RMSED,(dec) gradually rise when the signal dis-
tortion goes up. However, the nearly perfect alignment of RMSEε,(rec) and RMSEε,(dec) sug-
gests that the impact of large deciphering errors on energy is statistically negligible. In conse-
quence, the guard bounds (ϱlow, ϱhigh) could be relaxed. Additionally, it can be noticed that the
error RMSED̃,(rec) is smaller than RMSED,(dec). It is because the spherical angles D(dec) =
γ−1

8 (
√

8χ(dec)/2) are divided by 2 in the decoding stage.
The error RMSEp,(dec) remains small for every analyzed distortion. The rarely occurring er-

rors on pitch are usually significant and easy to detect. The observation suggests that a simple
pitch tracker added at the output of the descrambling block would overperform guard bounds
(κlow, κhigh) as an error correction mechanism.

In a realistic scenario, the receiver is not always perfectly synchronized in time with the sender.
Moreover, some voice channels equipped with adaptive gain control (AGC) may modify the signal
amplitude. As suggested by Figure 5.20, the deciphering unit is, to some extent, tolerant of energy
mismatch in the encrypted signal caused by AGC. Provided that the mismatch is no larger than the
energy guard intervals, a modified signal is decrypted into an energy-scaled speech. On the other
hand, the deciphering unit is very vulnerable to synchronization error. As shown in Figure 5.21,
the error in deciphered timbre rises dramatically when the mismatch exceeds 0.3 ms.
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Figure 5.15 – Waveforms at different stages of signal encryption.
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Figure 5.16 – Consecutive stages of signal encryption, presented in the time-frequency domain.
From top to bottom: initial speech, encrypted signal and resynthesized speech. The spectrograms
were obtained using a 1024-point Hann window.
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Figure 5.17 – Waveforms at different stages of signal encryption with Gaussian noise at SNR =
15 dB added to encrypted pseudo-speech.

Finally, the scheme’s robustness was checked over FaceTime on WiFi between two iPhones 6
running iOS 12. The precomputed pseudo-speech excerpts of total duration 120 seconds and enci-
phered with a predefined pseudo-random sequence were uploaded on one of the phones, sent over
FaceTime in chunks about 10-20 second long, and recorded on the second device. Figure 5.22
illustrates an example of the recorded signal and the decrypted speech. Table 5.3 lists the RMSE
of received and deciphered parameters retrieved from 120 seconds of a recorded signal.

Table 5.3 – RMSE of received and deciphered values in communication over FaceTime between
two iPhones 6. Results retrieved from 120 seconds of a recorded signal.

RMSEε,(dec) 1493.30 RMSEε̃,(rec) 1644.73
RMSEp,(dec) 525.70 RMSEp̃,(rec) 867.30
RMSED,(dec) 0.12 RMSED̃,(rec) 0.16
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Figure 5.18 – Distortion of received and deciphered parameters caused by adding Gaussian noise
at SNR = 15 dB to encrypted speech.
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Figure 5.19 – Root mean squared error (RMSE) of deciphered speech values and received pseudo-
speech values caused by adding Gaussian noise to encrypted speech (left column) or by compres-
sing the encrypted speech with Opus-Silk (right column). Simulation based on 100000 frames.

30 60 90 120 1500

214
215

216

frames

ϱ(init)
ϱ(dec)

Figure 5.20 – Deciphered speech energy from
encrypted signal scaled by the factor 0.85 and
distorted by Gaussian noise at SNR = 20 dB.
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Figure 5.21 – RMSE of received and deciphered
vectors representing the shape of spectral enve-
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zation on the receiving side. Simulation based
on 100000 frames.
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Figure 5.22 – Consecutive stages of signal encryption in communication over FaceTime
between two iPhones 6. The recordings are available online at https://github.com/
PiotrKrasnowski/Speech_Encryption.

5.4.3 Speech quality evaluation

As reported in [Kleijn et al., 2018], objective measures of speech quality (i.e., PESQ [ITU-T,
2001] and POLQA [ITU-T, 2018]) are suboptimal for evaluating Machine Learning based, non-
waveform vocoders. Consequently, we conducted a subjective listening test on a large number
of anonymous volunteers. The tests consisted of two parts. The first part checked the subjective
intelligibility of decrypted speech in perfect transmission conditions. The second part assessed
the subjective quality of speech restored from an encrypted signal with different distortion types.
The subset of speech samples used in the listening test has been selected from the LibriSpeech
corpus [Panayotov et al., 2015] and is available online. 11

The intelligibility experiment was inspired by the speech intelligibility rating (SIR) [Cox and
McDaniel, 1989]. During the test, the participants listened to 10 English sentences (4 female and
4 male speakers) of about 10 seconds each. In the first round, the speech utterances were consecu-
tively encrypted and decrypted, without distorting. In the second round, listeners were given the
initial sentences sampled at 8 kHz, which served as the reference. After listening to each speech
sample, the participants were asked to estimate the percentage of recognized words in the sen-

11. https://github.com/PiotrKrasnowski/Speech_Encryption

https://github.com/PiotrKrasnowski/Speech_Encryption
https://github.com/PiotrKrasnowski/Speech_Encryption
https://github.com/PiotrKrasnowski/Speech_Encryption
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tence. The ratings were defined as numbers between 0 and 100, where 0 denoted no recognized
word and 100 denoted that all words were recognized (Fig. 5.23). As opposed to rigorous, one-
word or vowel/consonant intelligibility tests [ITU-T, 2016b], testing the word intelligibility of a
sentence allows listeners to take advantage of the context. Because the participants were anticipa-
ted to be mostly non-native English speakers, they were allowed to listen to the sentences multiple
times.

Figure 5.23 – Rating scale used in the perceptual speech intelligibility test.

The quality assessment followed a MUSHRA methodology [ITU-R, 2015] adapted for percep-
tual evaluation of medium quality speech signals. The method is believed to provide more reliable
and reproducible results than the Mean Opinion Score (MOS) measure [ITU-T, 2016a], although
it is not immune to biases either [Zielinski et al., 2007]. In the MUSHRA test, a participant is
given several test audio files (called excerpts) which represent the same speech utterance proces-
sed by different algorithms. To allow the participant a thorough and unbiased evaluation, these
excerpts are given simultaneously and in randomized order. Among these randomized excerpts,
some represent the actual speech samples under test, whereas the remaining excerpts are a hidden
reference, a low-quality anchor, and a mid-quality anchor. During the quality test, the listeners
were asked to rate the subjective speech quality (i.e., naturalness, fidelity) against the reference, as
a number between 0 and 100 (Figure 5.24). The value 100 denoted ‘Excellent’ quality, meaning
that the perceived quality of the test excerpt was identical to the reference.

Figure 5.24 – Rating scale used in the perceptual speech quality test.

The MUSHRA tests were conducted in two rounds. The first round aimed at evaluating the
quality of sentences that were consecutively encrypted by our algorithm, distorted by AWGN
of varying intensity, and decrypted. In the second round, encrypted signals were compressed by
Opus-Silk at varying compression rate. In addition, the test excerpts in the second round included
speech utterances decrypted from the signal sent over FaceTime and recorded on iPhone 6. In both
rounds, the participants had to rate 6 different sentences (3 female and 3 male) of about 10 seconds
each. The reference was a wideband signal sampled at 16 kHz, the mid-anchor was a narrowband
signal sampled at 8 kHz, and the low-anchor was a narrowband speech signal sampled at 8kHz
and with the MNRU distortion at SNR = 15 dB [ITU-T, 1996b]. In contrast to the reference signal,
the mid-anchor may serve as a good benchmark to our tested signals due to the same speech
bandwidth. The systems tested in the speech quality assessment are summarized in Table 5.4.

The assessment was carried out entirely online using webMUSHRA, the framework for Web-
based listening tests [Schoeffler et al., 2015, Schoeffler et al., 2018]. The URL of the assessment
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was publicly available and widely distributed using social media. The participants were anony-
mous volunteers and their speech quality evaluation was not supervised by us. However, we as-
sume that the listeners were mostly non-native English speakers with unreported hearing impair-
ments. Table 5.5 lists the number of participants taking part in each test. The participants were
asked to wear headphones or earphones and were allowed to adjust the sound volume. Few parti-
cipants were excluded from aggregated responses because of rating the hidden reference below 90
more than once in a single test (mostly accidentally).

Table 5.4 – Hidden anchors and tested systems in the MUSHRA-based speech quality assessment.
Reference and anchors

Label Description
reference wideband speech sampled at 16 kHz

mid-anchor narrowband speech sampled at 8 kHz
low-anchor 8 kHz narrowband speech with MNRU at SNR = 15 dB

Systems under test in the assessment 1
Label Description

no distortion decrypted speech from signal with no distortion
20 dB SNR decrypted speech from signal with AWGN at SNR = 20 dB
15 dB SNR decrypted speech from signal with AWGN at SNR = 15 dB
10 dB SNR decrypted speech from signal with AWGN at SNR = 10 dB

Systems under test in the assessment 2
Label Description

Silk 64 kbps decrypted speech from signal compressed with Silk at 64 kbps
Silk 48 kbps decrypted speech from signal compressed with Silk at 48 kbps
Silk 32 kbps decrypted speech from signal compressed with Silk at 32 kbps

FaceTime decrypted speech from signal sent over FaceTime

Table 5.5 – Number of participants in the listening test.
Test Participants

Intelligibility test 44
Quality test 1 40∗
Quality test 2 37∗∗

∗ 18 listeners rated 5 utterances instead of 6
4 listeners excluded for reference underrating

∗∗ 3 listeners excluded for reference underrating

Table 5.6 presents sample mean and sample standard deviation of the intelligibility test. On
average, the participants recognized about 12% fewer words in synthesized speech samples than
in the reference. The average rating of particular sentences varied slightly from 82% to 89%. On
the other hand, a speaker-level average ranged from 58% to 99%. This high variability of average
ratings given by the listeners explains a considerable standard deviation of aggregated responses.

The results of the MUSHRA-based quality assessment are depicted in Figures 5.25 and 5.26.
In both test rounds, the hidden reference was rated correctly as ‘Excellent.’ The average rating of
the mid-anchors given by the participants was about 75% (‘Good’), and the average rating of the
low-anchors was about 30% (‘Poor’).
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The average rating of test excerpts labeled ‘no distortion’ was 64% (‘Good’/‘Fair’). Compa-
red with the average rating of mid-anchors, our algorithm reduced the speech quality by about
10%. It may be noticed that this difference in speech quality between the mid-anchors and the
excerpts labeled ‘no distortion’ is similar to the intelligibility loss in the SIR-based intelligibility
assessment.

The introduction of distortion into encrypted signals resulted in degraded speech quality. Gaus-
sian noise at SNR equal to 20 dB, 15 dB, and 10 dB lowered the average ratings of speech quality
respectively to 59% (‘Fair’), 46% (‘Fair’), and 19% (‘Poor’/‘Bad’). It can be noticed that a small
channel distortion, like the one introduced by AWGN at SNR = 20 dB, has a relatively minor
impact on perceived speech quality. On the contrary, the quality becomes bad when SNR reaches
10 dB. A similar observation can be made in the case of signal compression by Opus-Silk. The
compression of encrypted signals at 64 kbps, 48 kbps, and 32 kbps reduces the rated speech quality
respectively to 59% (‘Fair’), 52% (‘Fair’), and 28% (‘Poor’). The excerpts decrypted from signals
sent over FaceTime were rated at 49% (‘Fair’).

Table 5.6 – Intelligibility test results.
System Sample mean Sample standard deviation

Reference 97.5 6.6
Decrypted 86.0 14.7

reference mid-anchor no dist. SNR=20 dB SNR=15 dB SNR=10 dB low-anchor
0

25

50

75

100

Figure 5.25 – Results of the MUSHRA-based subjective quality assessment of speech decrypted
from signals with added Gaussian noise of different intensity. Bars mark standard deviation.
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Figure 5.26 – Results of the MUSHRA-based subjective quality assessment of speech decrypted
from signals compressed by Opus-Silk vocoder at different compression rates and from signals
sent over FaceTime between two iPhones 6. Bars mark standard deviation.
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The statistical similarity of given ratings was evaluated by the non-parametric Kruskall-
Wallis test [Kruskal and Wallis, 1952], which is more suitable for ordinal scales [Mendonça and
Delikaris-Manias, 2018]. The ratings of speech signals labeled ‘no noise’ come from the same
statistical distribution as speech signals labeled ‘SNR = 20 dB’ with the 0.09 confidence. Additio-
nally, the ratings of speech labeled ‘Silk 48 kbps’ are similar to speech labeled ‘FaceTime’ with
0.25 confidence, and the ratings of speech labeled ‘Silk 32 kbps’ come from the same distribution
as the low-anchor with 0.59 confidence. The ratings of the remaining systems were similar, with
the confidence much lower than 0.05.

The obtained results suggest that the speech encryption scheme described in this study can
produce intelligible speech. Moreover, the average speech quality of excerpts labeled ‘FaceTime’
hints about the possibility of making our system compatible with VoIP. However, high variability
in listeners’ responses indicates that the quality of decrypted speech is insufficient for having a
casual conversation. Thus, some progress has to be made to improve the system’s robustness to
distortion and the quality of speech synthesis.

5.4.4 Algorithmic latency and computational complexity

The minimum algorithmic latency in our encryption scheme is the sum of delays introduced res-
pectively by the enciphering and deciphering algorithms. The speech encoder introduces 30 ms
of delay (20 ms frame and 10 ms look-ahead), and the pseudo-speech analyzer introduces an ad-
ditional 20 ms delay. Finally, two 1x3 convolutional layers in the speech synthesizer use a 40 ms
look-ahead (2 frames). The combined 90 ms of the minimum algorithmic latency is significant
and may reduce the perceived quality of conversation. A possible solution is to reduce the analysis
look-ahead to 5 ms, and the synthesis look-ahead to 20 ms, like in the wideband LPCNet [Valin
and Skoglund, 2019].

The speech encoder implemented in the encryption scheme is reported to have a complexity of
16 MFLOPS, where about 8 MFLOPS are used for pitch prediction [Valin and Skoglund, 2019].
Moreover, the authors hint at the possibility of significant optimizations. These given values relate
to the scenario when a speech signal is sampled at 16 kHz. Thus, we roughly estimate our 8 kHz
speech encoder’s complexity to about 8 MFLOPS, including torus mapping transformations.

Enciphering (and deciphering) is relatively lightweight, as it requires only ten additions mo-
dulo per 20 ms frame. However, a higher computational load is associated with producing secure
bitstrings by the pseudo-random generator at a rate 8 kbps. For this reason, it is especially impor-
tant to select a PRNG based on well-established ciphers adapted for real-time applications, such
as AES-CTR [Käsper and Schwabe, 2009, Park and Lee, 2018].

Pseudo-speech synthesis consists of two steps: computing the harmonic parameters of a frame
and producing the signal samples. The complexity of the first step is dominated by deriving the
complex amplitudes of harmonics Ǎ of length K using Equation 5.14, where K is the number
of harmonics in a particular frame. Provided that all complex matrices (HB̃ω0)† are precomputed
and stored in the memory, the vector Ǎ can be obtained by searching the appropriate matrix from
the look-up table, by element-wise complex vector multiplication, and finally by one complex
matrix 16 × K multiplication. On the other hand, frame synthesis requires O(400K) floating-
point operations, where 400 is the number of samples within a frame with two guard periods.
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The pseudo-speech analyzer is mostly occupied by estimating the received fundamen-
tal frequency. The maximum-likelihood estimator implemented in the scheme has complexity
O(N log N) + O(NK), where N = 216 is the number of possible pitch values [Nielsen et al.,
2017]. Consequently, lowering the resolution of estimations or replacing the pitch predictor with
a more efficient version will give considerable computational gains.

The most computationally involving element in the encryption scheme is the final speech re-
construction. The LPCNet model implemented in the scheme has complexity:

C = (3dN2
A + 3NB(NA + NB) + 2NBQ) · 2fs, (5.30)

where NA = 384, NB = 16, d = 10%, Q = 256 is the number of µ-law levels, and fs is the sam-
pling frequency. For fs = 16 kHz, the estimated complexity of the synthesizer is 3 GFLOPS [Va-
lin and Skoglund, 2019]. Additionally, it is reported that a C implementation of the synthesizer
requires 20% computing power of a 2.4 GHz Intel Broadwell core, 68% of a 2.5 GHz Snapdra-
gon 845 core (Google Pixel 3), and 31% of a 2.84 GHz Snapdragon 855 core. From this, we
estimate that the complexity of the lightweight, narrowband implementation of LPCNet is about
2 GFLOPS, and it could operate in real-time on portable devices.

Table 5.7 lists the computational complexity of various parts of our algorithm estimated using
PyPaPi 12 library [Terpstra et al., 2010] when processing 60 minutes of a recorded speech in Py-
thon. The measurements were done under Ubuntu kernel 5.8.0-25 and using Intel Core i7 2.9 GHz
without multi-threading. The pseudo-random bitstring used for enciphering and deciphering was
precomputed and stored in the memory.

The listed results suggest that every tested part has a complexity low enough to be carried by a
portable device, especially if one considers migrating the experimental Python code to a compiled
code. Moreover, a replacement of the pitch predictor in the pseudo-speech analyzer would lead
to significant optimization gains. On the other hand, the computational analysis does not include
other essential elements of the system, such as keeping signal synchronization or adaptive energy
equalization.

Table 5.7 – Estimated complexity using PyPaPi library.
Process MFLOPS

speech encoding 8∗

enciphering 2
pseudo-speech synthesis 1032
pseudo-speech analysis 2756
• pitch prediction 2123
• remaining 634

deciphering 2
speech synthesis 2000∗
∗ from [Valin and Skoglund, 2019]

12. https://flozz.github.io/pypapi/

https://flozz.github.io/pypapi/
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5.5 Summary

In this chapter, we proposed a new speech encryption scheme for secure voice communications
over voice channels. The lossy speech encoding technique implemented in the system preserves
and protects only basic vocal parameters: fundamental frequency (pitch), energy (loudness), and
spectral envelope (timbre). The vocal parameters are enciphered using spherical group codes and
then encoded to a synthetic audio signal adapted for transmission over wideband voice channels.
Speech is reconstructed by the narrowband vocoder based on the LPCNet architecture.

Enciphering of vocal parameters is done using norm-preserving techniques: pitch and funda-
mental frequency are enciphered by translations, whereas spectral envelope by rotations on the
hypersphere in 16 dimensions. These techniques enable successful decryption of signals distorted
by moderate transmission noise, like AWGN, or processed by some wideband VoIP applications
such as FaceTime. However, the enciphering mechanism does not provide any data integrity. Ins-
tead, it is critical to ensure strong identity authentication in the initial cryptographic key exchange.
Authenticated key exchange over voice channels is covered in Chapter 6.

The robustness of the speech encryption scheme against channel distortion was verified experi-
mentally. Simulations showed that the system could correctly decrypt pseudo-speech with additive
Gaussian noise at SNR = 15 dB or compressed by the Opus-Silk codec at the 48 kbps rate. On the
other hand, an encrypted signal is sensitive to synchronization error larger than 0.3 milliseconds.
Furthermore, the results of the speech quality assessment indicated that the proposed encryption
scheme could produce intelligible speech with the quality depending on channel distortion.

The preliminary complexity evaluation and the successful transmission of encrypted signals
between two mobile phones hint that the proposed encryption scheme may work in real-time on
high-end portable devices. However, secure communication is susceptible to short signal dropouts
or de-synchronization. Consequently, robust communication is possible only over a stable vocal
link between the users. Additionally, adaptive voice-enhancing algorithms implemented in com-
mercial mobile phones (such as voice detection and noise suppression) usually lead to considerable
degradation of the speech quality. This problem can be tackled using dedicated CryptoPhones or
stand-alone devices connected with mobile phones in tandem, as described in the next chapter.

The presented experimental scheme requires further investigation. Firstly, speech quality could
be improved by replacing our narrowband speech synthesizer with the 4 kHz bandwidth with a
synthesizer with the 8 kHz bandwidth. The biggest challenge is to find a new representation for
the spectral envelope, which is compatible with the enciphering technique. The presented solution
uses 9 mel-scaled frequency windows that are insufficient for encoding the wideband spectrum.
A possible solution is to increase the number of mel-scaled windows to 18 and apply a dimen-
sionality reduction technique, such as Principal Component Analysis (PCA) [Wold et al., 1987]
or autoencoding [Kramer, 1991]. Dimensionality reduction may increase encoding efficiency be-
cause the coefficients within a single speech frame tend to be highly correlated.

Other improvements can be obtained in the pseudo-speech synthesis. The proposed synthe-
sis technique, while computationally efficient, is very phase-sensitive and not enough speech-like.
Instead of encoding the enciphered vector D̃(enc) into the real part of the complex frame spectrum,
it would be advantageous to encode D̃(enc) into the power spectral density (PSD). The main limi-
tation is that the vector D̃(enc) contains both positive and negative values, whereas PSD is always
non-negative. For this reason, envelope encoding could be performed in the cepstral domain.
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Furthermore, it may be worth adding a correction unit at the deciphering output for detecting
and smoothing deciphering errors. Since the vocal parameters in natural speech do not change qui-
ckly over time, the detection of large errors should be relatively straightforward. For example, the
correction unit could use machine learning techniques to correct errors on a particular channel. A
clear separation between the correction unit and the speech synthesizer could improve the quality
of synthesized speech and simplify the two-step network training.

Communication performance strongly depends on the stability of a vocal link. The problem
with fading channels could be mitigated by combining distortion-tolerant speech encryption and
multiple description coding (MDC) [Goyal, 2001,Venkataramani et al., 2003,Wah and Dong Lin,
2005]. Multiple description coding is a technique that fragments one media stream into several
substreams. Each substream is decodable into the initial stream, and decoding more substreams
improves the quality. The MDC could be used to split encrypted speech into multiple audio streams
and increase communication reliability.

In Chapter 6, we investigate authenticated key exchange over fading voice channels between
two speakers. Secure voice communication is possible only with a secret cryptographic key shared
by both parties. However, key authentication becomes very challenging without Public Key Infra-
structure (PKI) or reliable data-driven side channels. The next chapter proposes a robust Diffie-
Hellman key exchange authenticated by digital signatures and vocal verification. The exchange
requires data transmission over a voice channel, for example, using the DoV technique described
in Chapter 3.





CHAPTER 6
Key exchange over voice

channels
Secure communication over voice channels requires a prior exchange of cryptographic
keys over voice channels, without reliance on any Public Key Infrastructure (PKI). This
chapter describes our formally verified and authenticated key exchange (AKE) over
voice channels for secure voice communications, firstly introduced in [Krasnowski et al.,
2020] and presented at ICISSP 2020. It outlines the operational principles of the novel
communication system and enlists its security requirements. The voice channel charac-
teristics in the context of AKE protocol execution are thoroughly explained, emphasizing
differences to classical store-and-forward data channels. Namely, a robust protocol has
been designed specifically for voice channels with double authentication based on si-
gnatures, and Short Authentication Strings (SAS) compared vocally by the users. The
protocol is detailed and analyzed in terms of fundamental security properties and suc-
cessfully verified in a symbolic model using Tamarin Prover.
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Glossary

List of abbreviations
AKE Authenticated Key Exchange
CA Certificate Authority
DoS Denial-of-Service
DoV Data over Voice
ECDHE Ephemeral Elliptic Curve Diffie-Hellman
MAC Message Authentication Code
MITM Man-In-The-Middle
MSR Multiset Rewritting
PFS Perfect Forward Secrecy
PKI Public Key Infrastructure
SAS Short Authentication String
TTP Trusted Third Party
VAD Voice Activity Detection
VoIP Voice over Internet Protocol

Notation - protocols

IDU fixed user identifier
NU random and unique nonce
KS Session Key
SAS Short Authentication String displayed on the device
(RA, RB) Short Authentication String seeds
(dU , QU ) secret/public ECDHE key pair
(SU , VU ) signing/verification key pair
SignSU

(·) signature (signed with SU )
EncKU

(·) ciphertext (enciphered with a symmetric key KU )
hX(·) hash function with truncation to X bits
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6.1 Motivation

An increasing concern of privacy violation in voice communications has motivated the develop-
ment of secure voice over IP (VoIP) applications, with Telegram and Signal being the iconic
examples. 1 However, these applications are inherently insecure against spying malware installed
on the smart-phone [Scott-Railton et al., 2017]. Parallelly, cryptographically secure applications
requiring higher protection rely on dedicated hardware, most commonly Crypto Phones. These
closed and unverifiable solutions suffer from high costs and low flexibility, as typically encrypted
phones allow communications exclusively over a single kind of a voice channel, like GSM.

The mentioned limitations encourage the search for open solutions complementary to Crypto
Phones, combining flexibility and high protection provided by specialized hardware. A new idea,
depicted in Figure 6.1, is based on voice encryption in the audio domain. The speech is acquired
by (a) the headset’s microphone and then forwarded to (b) the encryption device (here called the
Crypto Box). The Crypto Box processes the speech and enciphers vocal parameters of the signal.
The encrypted speech in the form of a data stream shaped into a pseudo-speech audio signal
(e.g., as proposed in Chapters 3 and 5) is transmitted by (c) the audio link to the audio input of
(d) the phone and sent through 2G-4G networks or VoIP. Finally, the received pseudo-speech is
deciphered by the paired Crypto Box on the other side of the channel.

Figure 6.1 – Encrypted voice over voice channel scheme.

In such a setting, voice encryption is performed outside of the phone, protecting against audio-
recording malware. To limit the system corruption risk, the Crypto Box has only analog input/out-
put interfaces to the headset and the phone. However, it is necessary for security reasons that other
analog inputs of the phone (particularly the built-in microphones) should be blocked by a special
casing or removed.

From the system perspective, two Crypto Boxes are the end-points of a secured voice domain.
Everything in between, including mobile phones themselves, is a communication infrastructure
that enables voice transmission. The framework adds a new layer of security, protecting against
spying malware installed on the phone. Since all communications between encrypting devices
are done purely in the analog domain, selecting the specific voice communication technology is,

1. https://signal.org, https://core.telegram.org

https://signal.org
https://core.telegram.org
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therefore, a secondary issue. Compatibility with most vocal communication methods, like VoIP
applications or 2G-4G networks, significantly widens the range of usability scenarios. The descri-
bed setting, which is not intended for a daily-usage, is of great interest for business, diplomatic
and military services, who require secure communications in unreliable environments and without
access to confidential communication infrastructure.

The major motivation in our approach is to secure voice communications even with untrusted
phones. Consequently, the phones should not be actively involved in the setup of a secure connec-
tion or sensitive data storage. The open framework enables various hardware solutions, including
combining the phone and the Crypto Box into a single device.

Secure speech enciphering requires a prior exchange of session keys between the Crypto
Boxes. Due to system requirements, the key exchange can only be made through the same point-
to-point voice channel using Data over Voice (DoV) technique like the one described in Chapter 3.
Consequently, there is no practical possibility of adding an online trusted third party (TTP) or a
certificate authority (CA). Such a limitation is a big concern for users’ authentication.

Research on secure key exchange between two honest parties without any TTP led to the crea-
tion of standards suitable for VoIP applications, like the extension of the Real-Time Transport
Protocol (RTTP), called ZRTP [Callas et al., 2011], and Multimedia Internet KEYing (MIKEY)
protocol [Arkko et al., 2004]. Especially ZRTP is interesting in the context of this work because it
provides an authentication mechanism in the absence of any Public Key Infrastructure (PKI) or a
pre-shared secret. In these situations, authentication is based on vocally comparing Short Authen-
tication Strings (SAS). Unfortunately, with three modes of operation and extensive negotiation
signaling, even ZRTP seems overly complicated for communication over voice channels. Moreo-
ver, none of the protocols put a sufficient emphasis on resistance to strong message distortion or
desynchronization in a low-bandwidth environment.

6.2 System requirements

The need for hardware-based voice encryption is a response to an increased risk of being inter-
cepted. Thus, a cryptographic scheme should reflect higher requirements for secrecy and authen-
tication. The primary threat is recording and analyzing the network traffic by omnipresent passive
eavesdroppers. Active attackers controlling the network are more likely to block or distort com-
munications, which is technically very simple. However, a powerful and knowledgeable attacker
who is able to analyze and synthesize a compatible pseudo-speech may try to modify a message
or insert his own. Finally, in critical situations, the encrypting device could be hijacked in order to
extract long-term keys. On the other hand, in our work, we assume that the encryption device does
not allow any intrusion into its internal memory during the operation, so all ephemeral data stored
on the device (and deleted after each protocol run) should be considered secure.

The design process of the protocol is motivated by an anticipated user experience. However,
due to the severe constraints of the voice channel characteristics, the most significant challenges
are protocol complexity, synchronization, and robustness. A major bottleneck is a large message
round-trip time, around 2 seconds long, making the whole protocol run-time prohibitively long
even in simple protocols. Another limitation is the limited bandwidth implying a reduction of
the message size. Moreover, the protocol must be robust against fading and signal distortion, re-
quiring signalization simplification and strong error correction mechanisms. Finally, in order to
reduce battery power consumption, the cryptographic operations should be relatively lightweight
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and optimized. When implementing, relying on popular and verified network security libraries,
like OpenSSL, NaCL, or Mbed TLS, could be a practical advantage.

Adaptation to hardware and channel constraints should not lead to any significant relaxation
of the security level. It will be detailed that the key exchange protocol provides strong mutual
agreement on the parameters used for the computation of the session key. Moreover, it aims at
preventing Man-In-The-Middle (MITM) attacks and achieving Perfect Forward Secrecy (PFS).
The protocol enables users’ authentication, no matter if they share a common secret or not.

A successful and fast key exchange is an indicator of sufficiently good channel conditions that
offers comfortable communication. Every received message can be used to estimate the channel
characteristics effectively and to improve the decoding efficiency.

6.3 Key exchange protocols and symbolic security verification

Designing security protocols is prone to errors, which resulted in the publication of several flawed
protocols [Just and Vaudenay, 1996, Lowe, 1996, Lauter and Mityagin, 2006, Farrell, 2009, Tsay
and Mjølsnes, 2012]. Therefore, every protocol design ought to be thoroughly scrutinized by some
formal security verification. The verification should focus on the security of the ciphers used in
the protocol by eliminating logical flaws in the protocol’s messages.

At the high level, the cryptographic algorithms can be validated in the computational model by
showing the equivalence between the protocol’s security and some computationally hard problems,
e.g., integer factorization. The formalization often uses the indistinguishability approach [Canetti
and Krawczyk, 2001, Katz and Lindell, 2015], in which the adversary with finite power tries to
distinguish the generated key from an independent random string with fixed length.

Proving the protocol’s computational security provides clear advantages such as concrete
bounds on the probability of successful attack and the required keying material. However, it is
often a laborious and manual task. Moreover, it is difficult to show that a particular protocol is free
from logical flaws, or in other words, if its security cannot be compromised using only intended
protocol interactions.

The presence of logical flaws in the protocol is particularly important in communication over
channels controlled by the attacker. For instance, apart from interception, the attacker may block
and replay messages or insert his own versions. Furthermore, it is often assumed that the attacker
may concurrently communicate with many legitimate participants and replay messages.

The risk of logical flaws in the protocol can be mitigated or eliminated in the symbolic model,
using some formalization of the protocol execution. In contrast to the computational model, the
protocol messages in a symbolic model are sets of symbolic terms representing the algorithms
used to construct a particular message. Additionally, the cryptographic primitives and algorithms
are assumed perfect, meaning that they can be considered secure if checked in the computational
model. Formal symbolic verification is the first step of a protocol analysis, paving the way to
computational model verification [Goldwasser and Micali, 1984, Blanchet, 2012].

The protocol simplification offered by a symbolic formalism enables the automatic construc-
tion of symbolic security proofs. This task can be undertaken by many tools, such as AVISPA [Ar-
mando et al., 2005], Scyther [Cremers, 2008], ProVerif [Blanchet, 2001] or Tamarin Prover [Meier
et al., 2013]. Though, proving the security of a protocol is in general NP-complete for a bounded
number of sessions [Rusinowitch and Turuani, 2003] and becomes undecidable for an unboun-
ded number of sessions [Durgin et al., 2004]. As a result, the automatic verification tools rely on



6.3 – 6.3.1 Simple example of a protocol verification using Tamarin 137

heuristics and provide solutions for some classes of protocols. Some especially advanced proving
techniques are implemented in Tamarin and ProVerif, capable of constructing efficiently security
proofs even for an unbounded number of threads. Crucially, the heuristics applied during verifica-
tion does not affect the results’ soundness (the properties that are proved are always true).

ProVerif represents cryptographic protocols by a set of Horn rules (clauses) [Gupta, 1999].
Thus, security proving boils down to deriving facts in a Horn logic theory [Blanchet, 2009]. Horn
formalism enables the modeling of many cryptographic protocol verification problems, including
Diffie-Hellman exponentiation and signing. However, the approximations taken during the proving
process may give some false alarms, which should be eliminated manually. To reduce the chance
of non-termination resulting from undecidability, ProVerif uses a specialized resolution prover and
several reduction techniques.

Unfortunately, the reduction to Horn theory prevents modeling protocols with non-monotonic
state, i.e., protocols that intentionally reveal some secret during their execution. The possible wor-
karounds, such as process replication with new names, may raise more false-alarms.

The problem mentioned above can be partially avoided in Tamarin, 2 a powerful and increa-
singly popular automatic verification tool designed at ETH Zürich. Tamarin models protocols as
multiset rewriting (MSR) systems that specify security properties in a guarded fragment of first-
order logic. The tool supports generic Diffie-Hellman group operations and many cryptographic
primitives like signatures or hashes [Schmidt et al., 2012, Schmidt et al., 2014].

In Tamarin, the protocol’s execution can be viewed as a labeled transition system representing
the evolving adversarial knowledge, the messages sent over the network, freshly generated values,
and the protocol state. Thus, a single protocol realization takes the form of a time-stamped trace,
and the security properties are modeled as trace properties. Consequently, the verification (or fal-
sification) of the protocol’s security reduces to exploring the possible traces that may violate the
specified security property.

From the user’s perspective, the protocol verification can be done in two ways: using a
heuristic-based fully automated mode and an interactive mode. The verification result is bringing
some counterexample or the proof of correctness in the unbounded number of sessions and fresh
values. Nonetheless, because of undecidability, Tamarin may also not terminate.

Tamarin’s clear advantage is a user-friendly browser-based interface, which simplifies the ana-
lysis of the verification output. When a counterexample is found, a diagram of the protocol exe-
cution is displayed. Moreover, Tamarin offers an impressive database of examples that makes the
tool suitable for protocol evaluation.

6.3.1 Simple example of a protocol verification using Tamarin

Tamarin’s operation can be better understood using a simple example of KE protocol, which in-
volves sending Diffie-Hellman public keys authenticated by signatures. The protocol, presented in
Figure 6.2, consists of three messages exchanged between Alice and Bob, who share the signature
verification keys. The protocol execution starts with Alice sending her identification number IDA

and the public key gx. Bob responds by sending his identifier IDB , public key gy, and the signa-
ture signed with key SB . The last message is the signature of Alice signed with SA. The protocol
finishes by computing the session key KS . The set Z∗q denotes the integer ring Zq without the zero
element, ∥ denotes concatenation, and ←$ denotes a uniformly distributed probabilistic process
assignment [Katz and Lindell, 2015].

2. https://tamarin-prover.github.io/

https://tamarin-prover.github.io/


138 CHAPTER 6 — Key exchange over voice channels

Alice Bob

1 : x←$Z∗
q

IDA, gx

−−−−−−−−−−−−−→ y←$Z∗
q

2 : IDB , gy

←−−−−−−−−−−−−−−
SignSB

( IDA∥gx∥gy)

3 : KS = gxy SignSA
(IDB∥gy∥gx)

−−−−−−−−−−−−−−→KS = gxy

Figure 6.2 – Key exchange protocol with signatures.

Protocol modeling: The Tamarin code describing the protocol model is listed in Figure 6.3. The
model consists of a key pair generation rule Generate_pk and four multiset rules which specify
the protocol interactions. Each of the rules can be invoked an unlimited number of times and in
any order.

Figure 6.3 – Tamarin code of the protocol model.
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Rules are defined by four elements: their name, left-hand side facts (inputs), transition facts
(actions), and right-hand side facts (outputs). As an example, the rule Initiator_2 takes as input
the state Initiator_State from the rule Initiator_1, the fact Sign_Key representing the Initia-
tor’s signing key, the fact Verif_Key representing the Responder’s verification key and the In-fact
denoting the message assumed to be sent by the Responder. Furthermore, the expected message
is the concatenation of the Responder’s ID_B, her public key 'g'ˆBprivkey, and her signature
signB. The transition fact Session_Initiator binds the constants representing the users’ identifiers
with the generated session key symbol, whereas Verify_Signature_Initiator links the received
signature with the signature expected by the Initiator. Finally, the rule Initiator_2 generates the
Out-fact with the Initiator’s signature.

The adversary would need to be granted some appropriate capabilities and access to specific
knowledge to make the protocol model more realistic. The fact types used in the rules put specific
limitations to adversarial manipulations. The In-fact representing the message received from the
network can accept messages from a legitimate user and the adversary. The Out-facts, once ge-
nerated, can be replayed and manipulated. On the other hand, the constants generated by Fr-facts
(from Fr-esh) are unique and unguessable by definition.

Similar properties can also characterize constants. The dollar sign $ next to the symbol means
that the symbol is known globally (like the user’s identifier). The tilde ∼ denotes a random value,
unguessable before being revealed.

The cryptographic primitives used in the model are assumed to be secure in the computational
model. For instance, the adversary cannot extract the secret key from the group exponents or forge
the signatures. However, the adversary is capable of generating his public keys and signatures.
Therefore the protocol rules must permit the reception of invalid input and provide some method
for its verification.

Figure 6.4 – Tamarin code of the security lemma Session_Key_Secrecy_1.

Security properties: In the next step, one may specify the protocol’s desired properties to be
verified by Tamarin. These properties are defined as trace properties, called lemmas. They may
relate to the protocol’s secrecy, authentication, or resistance to some malicious manipulations (i.e.,
replay attacks, desynchronization).

To verify the secrecy of the session key, we may specify the lemma Session_Key_Secrecy_1,
listed in Figure 6.4. The lemma states that if any responder accepts the key secret_key and esta-
blishes the session with any legitimate initiator at some arbitrary time-point i, it implies that there
is no time-point (in the past nor in the future) when the adversary may learn that key.

However, Tamarin disproves the lemma and presents a counterexample shown in Figure 6.5.
It can be observed that the adversary simulates the initiator and sends his signature. Interestingly,
the adversary also injects an insecure public key 'g' (instead of some 'g'ˆAprivkey). As a result,
the Responder accepts the session key of the form 'g'ˆBprivkey, which is her public key.
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Figure 6.5 – Counterexample falsifying the lemma Session_Key_Secrecy_1. The green boxes re-
present the protocol rules. The specific inputs of the rules are connected with the outputs of former
rules by arrows. The ellipses denote adversarial actions. In this counterexample, the adversary (a)
creates invalid signature, (b) impersonates legitimate user $ID_A and inserts the invalid public
key 'g', and (c) obtains the session key 'g'ˆBprivkey.

The attack on the protocol security was possible because the model does not enforce the Re-
sponder’s signature verification. This shortcoming, while realistic, should be taken into account in
the specification of the lemma. The new proposition for the lemma can be found in Figure 6.6. In
addition to previous requirements, the Responder accepts only the expected signature signed by
the Initiator. Tamarin validates this new security property.

Figure 6.6 – Tamarin code of the improved security lemma Session_Key_Secrecy_2.

The presented example underscores the need for a careful evaluation of the protocol model
constructed in relation to the anticipated adversarial power and protocol handling by legitimate
users. For instance, one may notice that the example is still not realistic because secret keys can-
not be revealed to the adversary (accidentally or intentionally). Thus, to mitigate the risk of mis-
sing out on some dangerous forms of attacks, there is a common practice to grant the adversary
more considerable capabilities and knowledge than in reality. If the protocol withstands powerful
adversarial manipulations, it could be suitable for implementation.
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6.4 Protocol description

This section presents the symbolic model of the authenticated key exchange protocol over voice
channels and provides a brief discussion.

6.4.1 Preliminaries

Let us describe the key exchange between honest users Alice and Bob, who know each other,
without any legitimate trusted third-party participating. The operational framework requires that
Alice and Bob must establish a non-encrypted voice connection with a preferred voice application
before initiating secure communication. The system model assumes that identity information used
to make a call (i.e., phone number, user account, credentials) is independent of the authentic user
identity and the identification number of the voice encryption hardware. Only one running session
at a time is possible since each device cannot process more than one message simultaneously. The-
refore, several kinds of Denial-of-Service (DoS) attacks, when the attacker tries to send multiple
messages to a recipient, are not effectively different from distorting or blocking the channel.

In highly unreliable channels like voice channels, Alice and Bob are never sure of message de-
livery. Thus, several synchronization techniques are needed, i.e., repeat requests, retransmissions,
and time-outs. For simplicity and space limitations, most details on synchronization will be omit-
ted here. Additionally, thanks to strong error-detection coding, users can detect random channel
errors and discriminate them from intentional malicious manipulations.

6.4.2 Symbolic model of the protocol

The proposed protocol presented in Figure 6.7 relies on Ephemeral (Elliptic-Curve) Diffie-
Hellman (EC)DHE exchange [Hankerson et al., 2004], authenticated by signatures (existentially
unforgeable and deterministic) or Short Authentication Strings. An example of a signature algo-
rithm suitable for use is ECDSA with the SHA256 function [ANSI, 2005]. The output of the hash
function can be truncated depending on the needs [Quynh, 2012]. Before the protocol starts, Alice
and Bob agree on the elliptic curve, and the lengths of keys and nonces. Public verification keys
should be provided to the recipients in some authenticated way before the communication starts
and stored in the Crypto Box address book. However, in many real scenarios, it is not possible to
adequately provide such a verification key. If the recipient cannot verify the signature, the protocol
offers vocal verification as an alternative, authenticating the speakers and the parameters used to
derive the current session key.

The protocol interaction consists of several steps: the setup, the key exchange and authen-
tication, the protocol acknowledgment, and the optional vocal verification. Table 1 contains the
glossary of terms used in the protocol specification, along with their bit-lengths.

Setup: The negotiation stage has been considerably simplified. Participants have to agree on star-
ting the key exchange procedure mutually. Therefore the actual key exchange protocol is preceded
only by fast and automatic role negotiation to prevent mutual interference or logjams. Then, both
Alice and Bob choose a random private integer d, a random and unique nonce N , a random value
R and compute a public key Q. Unique nonce guarantees the uniqueness of the triple (ID, Q, N).
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Key exchange and authentication: In this stage, Alice and Bob exchange the values that are
used to obtain the Session Key (KS) and the SAS. Alice sends her public ID, the nonce, the
ephemeral public key, and the hash, with her RA included. Bob responds with his values, appends
RB , and additionally sends his signature over all sent parameters required for KS calculation.
Alice answers with her signature over the same data and finally reveals RA. It is worth noticing
that the protocol permits a situation when the signature cannot be verified. If any of the recipients
did not obtain a verification key corresponding to the sender’s ID, the signature is checked against
channel errors but not processed further.

Protocol acknowledgment: When all cryptographic parameters are exchanged, voice encryption
can be started. Encryption is initiated after the reception of Bob’s acknowledgment by Alice. The
acknowledgment is a confirmation of error-less message reception so that it can be non-encrypted.

Short Authentication String comparison: Each participant can request a check of vocally chal-
lenging SAS equality with the peer. SAS comparison is obligatory if any of the users were not
able to verify the signature. It is assumed that the comparison process is authenticated meaning
that the users are able to recognize the voice characteristics of the peer (e.g., personal info,timbre,
tempo). The SAS is displayed on the Crypto Box as a short string of digits or words to be vocally
uttered by the users.

Table 6.1 – Glossary.
Acronyms Definitions Bits
IDU fixed user identifier 32
NU random and unique nonce 32
KS Session Key 256
SAS Short Authentication String 32
(RA, RB) Short Authentication String seeds (128, 32)
(dU , QU ) secret/public ECDHE key pair (256, 256)
(SU , VU ) signing/verification key pair (256, 256)
SignSU

(·) signature (signed with SU ) 256
hX(·) hash function with truncation X

6.5 Formal verification

This section presents the results of the protocol verification done with Tamarin Prover.

6.5.1 Protocol modeling

Verification by Tamarin implies providing an abstract protocol model that tries to express relevant
information from a security perspective faithfully, but still within the analysis’s feasibility. The
protocol model code can be found in Annex A and online. 3 Several protocol restrictions were
relaxed to make them compatible with the channel’s characteristics, allowing users to run multiple
protocol instantiations at the same time and to ‘forget’ the verification key of the peer. SAS veri-
fication is performed by a separate non-obligatory protocol rule simulating a realistic case when
users simply ignore it. Vocal challenging is modeled as communicating over an authenticated (not
secret) channel, which the adversary can intercept but not modify. The last ACK is skipped.

3. https://github.com/PiotrKrasnowski/AKE_over_Voice

https://github.com/PiotrKrasnowski/AKE_over_Voice
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. . . . . . . . . . . . . . . . . . . . . . . . Unsecured call initiation . . . . . . . . . . . . . . . . . . . . . . . .

Alice vocal agreement on←−−−−−−−−−−−−−−−−−−−−−−−−→
protocol initialization

Bob

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 : NA←$Z∗
32

A/B role←−−−−−−−−−−−−−−−−−−−−−−−−→
negotiation

NB ←$Z∗
32

2 : dA←$Z∗
256 dB ←$Z∗

256

3 : QA = dAG QB = dBG

4 : RA←$Z∗
128 RB ←$Z∗

32

. . . . . . . . . . . . . . . . . . . . Key exchange and authentication . . . . . . . . . . . . . . . . . . . .

5 : IDA, NA, QA−−−−−−−−−−−−−−−−−−−−−−−−−−−→
h128(IDA∥NA∥QA∥RA)

6 : IDB , NB , QB , RB←−−−−−−−−−−−−−−−−−−−−−−−−−−−
SignSB

(‘B’∥IDA∥NA∥QA∥IDB∥NB∥QB)

7 : Z = dAQB
RA−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SignSA
(‘A’∥IDB∥NB∥QB∥IDA∥NA∥QA)

Z = dBQA

8 : KS = h256(Z∥•) KS = h256(Z∥•)

. . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 : ACK←−−−−−−−−−−−−−−−−−−−−−−−−−−

. . . . . . . . . . . . . . . . SAS comparison over Encrypted Channel . . . . . . . . . . . . . . . .

10 : SAS = h32(⋆) SAS vocal←−−−−−−−−−−−−−−−−−−−−−−−−−→
comparison

SAS = h32(⋆)

Symbols:

• ≡ IDA∥NA∥IDB∥NB

⋆ ≡ RA∥RB∥IDB∥QB∥NB

Figure 6.7 – Key exchange protocol over voice channels.

6.5.2 Security properties and verification results

The protocol model was checked against the Dolev-Yao adversary [Dolev and Yao, 1983], having
full control over the network and the power to reveal the long-term secret key of any user (epheme-
ral data is considered secure). The evaluation was done in four authentication configurations: mu-
tual signature authentication between two honest users, unilateral signature authentication (when
only one user can verify the peer’s signature), vocal verification, or no authentication.

Verification focused on most critical security properties: (perfect forward) secrecy and a
mutual injective agreement [Lowe, 1997] on the Session Key. The protocol was also verified for
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resilience to reflection attacks (a user cannot accept her own identity as a peer) and signing key
compromise impersonation (adversary can impersonate only corrupted users). The descriptions of
the properties used in specifying the security lemmas (some informally) are listed below.

Session Key Secrecy: whenever A sets up a session key, apparently with B, then the adversary
cannot learn the session key unless the long-term key of A or B has been revealed.

Perfect Forward Secrecy (PFS): whenever A sets up a session key, apparently with B, then
the adversary cannot learn the session key unless the long-term key of A or B has been revealed
before the setup.

Non-injective Agreement: whenever A (acting as an initiator) completes a run of the protocol,
apparently with responder B, then B has previously been running the protocol, apparently with
A, and B was acting as responder in his run, and the two agents agreed on the data values corres-
ponding to all the variables in some set of data items S.

Injective Agreement: same as non-injective agreement, plus that each run of A corresponds to a
unique run of B.

Reflection Attack Resilience: whenever A completes a run of the protocol, apparently with B,
then B is different than A.

Key Compromise Impersonation (KCI) Resilience: whenever the adversary corrupts a party A
and reveals her long-term key, the adversary cannot impersonate another uncorrupted party.

The protocol verification results can be found in Table 6.2. The protocol configurations in-
volving signature authentication or authenticated SAS comparison were proven to provide perfect
forward secrecy and injective agreement. Unilateral signature authentication between two honest
users who know each other guarantees the same security as mutual signature authentication. Sur-
prisingly, vocal verification does not protect against reflection attack because the user can trivially
compare SAS with herself. The results in Table 6.2 indicate the importance of authentication:
none of the properties were verified if no authentication was performed. Crucially, the security of
SAS-based authentication and unilateral signature authentication is valid only under the assump-
tion that the peers can truly identify each other by voice.

Table 6.2 – Security properties verified by Tamarin in four authentication scenarios.
Authentication
scenario:

mutual signature
authentication

unilateral signature
authentication

SAS vocal
verification

no authen-
tication

Session Key secrecy ✓ ✓ ✓ ✗

forward secrecy ✓ ✓ ✓ ✗

non-injective agreement ✓ ✓ ✓ ✗

injective agreement ✓ ✓ ✓ ✗

reflection attack ✓ ✓ ✗ ✗

key compromise
impersonation

✓ ✓ - -
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6.6 Security considerations

This section explains in more detail some protocol characteristics, providing several justifications
and practical recommendations. It starts from an overview of fundamental protocol elements: the
choice of public-based cryptography, the role of signatures, and Short Authentication Strings.
Later, the section enlists potential protocol weaknesses and some possible fixes.

6.6.1 Discussion

Public key agreement versus symmetric cryptography: In exceptionally constrained resource
devices, such as IoT sensors or RFID cards, the pursue for ultra-lightweight key exchange
protocols led to some shift from the public key encryption towards symmetric encryption tech-
niques [Lee et al., 2014, Echevarria et al., 2016, Baashirah and Abuzneid, 2018]. Even the ZRTP
protocol offers a possibility of key exchange in a lightweight preshared mode. In this configura-
tion, two entities share a secret used to encrypt or refresh the keying material for a new session.
To achieve Perfect Forward Secrecy, the long-term secret should be regularly updated, desirably
after each successful key exchange run. The update decision has to be mutual, otherwise risking
one-side update and user desynchronization. Unfortunately, such a risk cannot be eliminated in
voice channels because the last update confirmation message may not be delivered. Decreasing the
chance of desynchronization by sending more confirmation messages would negatively affect the
protocol run-time. Another solution, based on on-the-fly resynchronization mechanisms, requires
an online server keeping track of all key updates or a costly and potentially insecure ‘guessing’ of
the long-term parameters until decryption is successful [Baashirah and Abuzneid, 2018]. Finally,
as was emphasized before, in some scenarios, the exchange of long-term secret is impossible,
limiting the usability of symmetric cryptography. In light of the reasons mentioned above and
relatively smaller hardware restrictions compared to IoT sensors, a public-based key exchange
scheme seems adequate.

Role of Short Authentication Strings: If the key exchange is not interfered with by a third party,
both participants obtain the same Short Authentication String. Challenging SAS vocally between
honest users has a twofold role. Firstly, it enables the authentication of users based on voice iden-
tification. Secondly, the inequality of codes may indicate the presence of an active MITM attacker.
However, MITM manipulations would remain undetected if the attacker can somehow influence
or precompute the SAS value before the users.

The code computation depends on seed values RA and RB chosen randomly by honest users.
Importantly, Alice and Bob are forced to select seeds before knowing the value of their respective
peer: Alice by sending the hash of RA in the first message and Bob by revealing his RB before
RA. Such a construction, inspired by [Pasini and Vaudenay, 2006], prevents adaptive selection
of seeds by each party. The same rule applies to the attacker who cannot predict the SAS value
until it is too late. The only hope for him is a random guess with a low probability of success or
an extraction of RA from the hash sent in the first message by brute force search. For this last
reason, the length of RA should be considerably larger than RB . On the other hand, the difference
of lengths is partially compensated by taking QB∥NB as an additional input of the hash function.
It is worth noticing that the SAS value does not have to be confidential since it plays only an
authentication role and cannot be modified without detection.
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In practice, the security of vocal verification also depends on how users abide by it. The SAS
could be represented by a smaller number of simple pictographs or easily pronounceable words,
the same way as in the ZRTP, which has the PGP Word List incorporated into its framework [Zim-
mermann, 1996,Callas et al., 2011]. The device should encourage the mutual SAS comparison by
indicating a part of the SAS value to pronounce and a part to hear from the peer.

Signature-based authentication: Signatures enable device authentication and message integrity,
similarly to message authentication codes (MAC) which are simpler and easier to compute. Indeed,
in some scenarios choosing hash-based MAC instead of signatures would be sufficient. However,
signatures give wider flexibility, justifying their higher computational cost. The natural advantage
of signatures is that they do not require mutual agreement and secure exchange of a long-term
secret between two parties. Moreover, each user keeps in memory only one private signing key,
used regardless of the receiver’s identity. Consequently, if the user is corrupted, the attacker should
be able to impersonate only that person.

When one user cannot obtain a verification key due to an insecure environment, it is still pos-
sible to achieve unilateral authentication [Boyd and Mathuria, 2003, Maurer et al., 2013, Dodis
and Fiore, 2017]. One-side authentication prevents MITM attacks, leaving only two possibilities:
honest users securely exchange a secret, or the attacker is an authenticator [Maurer et al., 2013].
It naturally implies that if the users want to communicate and they know they can perform uni-
lateral authentication, the attacker cannot interfere undetected in another way than preventing the
successful exchange. However, the user who failed to authenticate the peer is still compelled to
challenge the SAS because, from her perspective, it is the only formal way to verify the absence
of the MITM manipulations.

Due to a lack of any PKI infrastructure, a signature key management policy has a crucial
impact on system security and usability. We will point out two possible schemes, decentralized
and fully centralized, which can be chosen depending on the needs. In a centralized system, the
keys are managed by an offline central authority, keeping track of all records and being responsible
for key distribution and update. In a decentralized case, each user is entitled to generate her key
pair and distribute public keys to specific users authentically. As in the PGP model, sharing the
key can be performed remotely based on speaker identification and vocal authentication. Thus,
the proposed protocol with SAS comparison gives the possibility to authenticate the exchange of
signature verification keys.

6.6.2 Possible attacks and threats

Many protocol vulnerabilities focus on selecting specific cryptographic algorithms, their imple-
mentation, and compliance with the protocol rules. The biggest threat is posed by not respecting
the obligation of SAS comparison by real users, opening a space for MITM attacks.

The capabilities of modern speech synthesizers which exploit AI techniques to impersonate
a speaker’s voice [Gao et al., 2018] question the level of authentication provided by voice re-
cognition. Instead of breaking the SAS security, the attacker may simulate or replay the speaker
pronouncing the code [Shirvanian et al., 2018]. The risk is amplified because the voice sent is
highly compressed and thus significantly differs from its real characteristics. For this reason, it is
recommended to extend the sequence comparison by contextual questions (like describing the last
watched movie) or to share personal information known only by the peer but not by the attacker.
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If honest users can verify signatures of each other and achieve strong authentication, the at-
tacker may try a downgrade-attack. It can be done simply by modifying users’ ID and imposing
vocal verification. The problem may be partially solved by displaying the IDs along the SAS.
However, the real solution would be to force signature verification by default.

Finally, the proposed protocol cannot protect against the consequences of a device being sto-
len or misused, giving the manufacturer the responsibility to provide strong enough password or
biometric protection. The device should be protected against physical tampering, making reverse
engineering very difficult, and minimizing the negative consequences of theft.

Alice Bob
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▲ ≡ IDB∥NB2∥QB∥IDA∥NA2∥QA

▼ ≡ IDA∥NA2∥QA∥IDB∥NB2∥QB

• ≡ IDA∥NA2∥IDB∥NB2

Figure 6.8 – Key exchange protocol over voice channels with identity protection.
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6.6.3 Protocol with identity protection

In many situations, protecting the user’s identity is as crucial as securing the speech content. Howe-
ver, calling anybody with a civilian communication network is always associated with revealing
user metadata (i.e., phone number, user credentials, location). Even if the metadata is publicly
known, it may be advantageous to hide the identity of the encrypting device from passive eaves-
droppers.

It is possible to redesign the proposed protocol to attain identity anonymity without the change
of any other substantial protocol property mentioned in Section 6.5.2. The modified protocol is
presented in Figure 6.8 and verified in Tamarin. The IDs and the signatures of Alice and Bob
are sent encrypted with the key derived from a DH secret exchanged during first message round-
trip, similarly to the Initial Exchange of IKEv2 standard [Kaufman et al., 2010]. The protocol
includes one more message, which is required for confirming the reception of Alice’s ID by Bob.
On the other hand, there is no verbal agreement on the protocol initialization over an unsecured
call to prevent the leakage of the speaker’s identity by his or her voice profile. Instead, protocol
initialization is done automatically when the call starts. Unfortunately, the proposed protocol does
not protect the identity against the curious attacker who may initiate the protocol execution and
break the connection once the Responder’s identity is revealed in the second message.

The complexity of a protocol providing anonymity would increase since it will require additio-
nal data encryption, i.e., using AES. It is also important to carefully evaluate how the encryption
key is derived and how it is related to the session key, giving no foothold for cryptanalysis. In
the proposed protocol, each encrypted message is encrypted with a different key (hence KB1 and
KB2). In addition, the session key derivation uses two additional nonces NA2 and NB2, sent en-
crypted. The Tamarin code modeling the protocol and security lemmas is listed in Annex B and is
available online. 4

6.7 Summary

This work attempts to bring a solution to the problem of a cryptographic key exchange over voice
channels for cryptographically secure voice communications. It also introduces challenges related
to secure communications over voice channels like limited available bandwidth, no guarantee of
message delivery, and the issue of battery consumption. The paper lists the security requirements
posed to the system, like protecting against interception and MITM attacks, emphasizing user
authentication in the absence of a trusted server. All these concerns and limitations justify the
need for a dedicated protocol instead of relying entirely on standardized solutions.

We proposed a simplified key exchange protocol between two honest parties based on the
ephemeral elliptic curve Diffie-Hellman (ECDHE) protocol. The protocol offers two ways of au-
thentication: signatures and Short Authentication Strings. A symbolic model of the protocol was
analyzed using Tamarin Prover to verify the crucial security properties as Perfect Forward Secrecy
and mutual agreement on the Session Key. The verification process was explained, pointing out
the limitations of the symbolic analysis, such as model simplifications and perfect cryptography
assumption.

Formal verification was followed by discussing the protocol properties, like unilateral authen-
tication provided by one-side signature verification or the role of vocal comparison in preventing

4. https://github.com/PiotrKrasnowski/AKE_over_Voice

https://github.com/PiotrKrasnowski/AKE_over_Voice
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MITM attacks. The analysis led to the observation that all analyzed techniques do not provide
perfect authentication per se. Thus, some informal identity authentication methods had to be in-
troduced.

Potential vulnerabilities and attacks on the system were also covered in this work. Several pro-
positions and practical solutions regarding key management, proper SAS comparison, or identity
protection can guide engineers working on exchange protocols over voice channels or in similar
scenarios.

The presented verification is just the first step in designing a secure protocol implementation.
In a future work, it is necessary to specify the algorithms involved in the exchange and prove the
protocol’s security in the computational model. In the next step, the protocol should be implemen-
ted on some portable devices and tested over real-voice channels.





CHAPTER 7
Conclusion and

Perspectives
This thesis addressed the problem of secure voice communications via digital voice channels.

The goal of the study was to propose, investigate, and validate some new real-time speech encryp-
tion schemes adapted to error-prone transmission in the audio domain. The thesis also targeted
many practical aspects of secure voice communications that would make the investigated schemes
compatible with real-world voice channels.

Modern voice communication systems, such as cellular networks and VoIP, process speech
signal with several adaptive algorithms that remove background noise and compress the signal
before sending it. These operations are non-linear, implementation-dependent, and often unavai-
lable to scrutiny. Consequently, sending encrypted voice as pseudo-speech over real-world voice
channels remains a big challenge. The investigation of voice channels that we carried in this study
helped us to identify four research problems: (1) data transmission over real voice channels, (2)
distortion-tolerant enciphering of multi-dimensional data, (3) joint speech compression and en-
cryption robust against transmission error, and (4) authenticated cryptographic key exchange over
fading channels.

Secure systems rely on provably secure ciphers, verifiable cryptographic protocol models, and
correct implementations. This study addressed the first two challenges by proposing a speech en-
cryption scheme with provable security (albeit with strong assumptions on the security of pseudo-
random generators and seeds) and describing a key exchange protocol verified by Tamarin Prover.
Nevertheless, we tried not to miss the primary objective that is a successful deployment on real
devices. Limitations of real-world voice communication systems and anticipated user experience
considerably influenced the solutions proposed.

Contributions

Data over Voice (DoV) technique

The review of existing voice communication systems revealed that cellular networks and many
VoIP applications rely on the classical source-filter speech model and Linear Predictive Coding
(LPC). For this reason, we proposed a robust and versatile DoV technique inspired by harmonic
vowels and thus compatible with LPC-based voice channels. The technique is based on code-
books of short (2.5 - 5 ms) waveforms consisting of 7-10 phase-modulated harmonics. The code-
book design process is significantly simplified and boils down to constructing quaternary codes to
maximize the minimum Lee distance.
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The technique’s robustness was initially verified by compressing produced DoV signals by
three prominent LPC-based voice coders: Speex and Opus-Silk used in VoIP, and AMR adopted in
cellular networks. The tests revealed that compression causes group delay in the phase-modulated
harmonics, which could be efficiently compensated at the reception side.

A simple structure of DoV symbols inherited from quaternary codes gives control over the
transmission rate and robustness against channel distortion. This property is crucial when consi-
dering data transmission over a real voice channel with fluctuating characteristics. An available
bitrate ranging from 1 kbps to 6.4 kbps is sufficient for sending the encrypted bits of compres-
sed speech or side information needed to establish a secure connection (e.g., cryptographic key
exchange).

The technique has been successfully validated by sending synthetic DoV signals between mo-
bile phones over 3G networks, FaceTime, Skype, WhatsApp, and Signal Messenger. The achieved
transmission bitrates varied from 2.4 kbps in 3G networks up to 6.4 kbps in VoIP, with a bit error
rate lower than 1%. However, correct signal synchronization is mandatory for correct signal de-
modulation. Furthermore, it is crucial to prevent the triggering of Voice Activity Detection (VAD).
Frequency band alternation and repetitive silence insertion are possible remedies.

We also presented an experimental system for secure voice communication based on the DoV
technique in high and low operation modes. The system uses Codec2 for speech compression,
AES-256 encryption in the CTR mode, and shortened Reed-Solomon codes for encrypted data
protection. The encrypted data are transmitted using the DoV technique at 2.4 kbps or 4.8 kbps
rate, depending on the operation mode. Some tests with mobile phones and real-voice channels
confirmed that the proposed system could secure voice communications over voice channels. The
recordings used in the experiments are available online. 1

Distortion-tolerant enciphering of vectors on spheres

The investigation of robust data transmission over real voice channels concluded by an obser-
vation that transmission errors could not be fully eliminated. This characteristic of voice channels
undermines the usefulness of many well-established cryptographic schemes that are intolerant to
error. This study introduced a notion of distortion-tolerant encryption describing the cryptogra-
phic scheme’s capability to decrypt enciphered data approximately despite data distortion. The
new notion is a relaxation of distance-preserving encryption designed for protecting remote data-
bases. Due to their robustness against channel distortion, distortion-tolerant encryption schemes
are suitable for sending encrypted data over voice channels. However, they are also susceptible
to adversarial manipulations because it is hard to differentiate intentional data modification from
random noise.

We presented a distortion-tolerant scheme for enciphering vectors on spheres, which can be
used to scramble high-dimensional vectors representing vocal timbre. The proposed scheme en-
codes unit vectors to codewords of a dense spherical commutative group code constructed from
a pair of nested lattices. Data enciphering is done by performing rotations selected from an as-
sociated group of orthogonal matrices, and relying on the output of a Pseudo-Random Number
Generator (PRNG) with a secret seed of length at least 128 bits. All rotations in the group are
commutative and reversible. Consequently, small transmission errors are still mapped to plaintext
during decryption, which makes the system distortion-tolerant.

1. https://github.com/PiotrKrasnowski/Data_over_Voice

https://github.com/PiotrKrasnowski/Data_over_Voice
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The encryption scheme gives indistinguishable encryptions in the presence of an eavesdropper
when the source of randomness is a secure non-binary PRNG with a fresh seed. In real implemen-
tations, it is essential to ensure high-quality entropy to obtain the seed. Furthermore, the selected
deterministic non-binary sequence generator must give unpredictable output up to the instantiated
security strength determined by the seed. A possible solution is to construct a dedicated genera-
tor that outputs non-binary numbers. Such a dedicated generator must be carefully evaluated by
well-designed statistical tests, which seems to be more challenging for non-binary sequences than
binary sequences [Baigneres et al., 2007, Epishkina, 2018]. For instance, we attempted to mea-
sure the randomness of scrambled data using the Statistical Tests Suites (STS) known as diehard 2

tests developed by Prof. G. Marsaglia from FSU, USA, and dieharder 3 tests developed by Prof.
R. Brown from Duke, USA. These statistical evaluations were inconclusive due to the inadequacy
of binary statistical tests for non-binary sequences. Another idea is to use a trusted binary sequence
generator and sequentially read its output as unsigned integers.

The toy example of color scrambling developed in that part suggests that our encryption
scheme may be useful in applications different from voice encryption. However, it is mandatory
to find a suitable data representation as unit vectors on spheres. The idea is to link distances on
the hypersphere with perceptual similarities of encoded data. With such an approach, quantiza-
tion and channel errors would have a limited impact on decrypted data perception. Consequently,
distortion-tolerant encryption is applicable whenever robustness against distortion is prioritized
over fidelity.

Distortion-tolerant speech encryption

We proposed an experimental speech encryption scheme for secure voice communication over
voice channels. This scheme is distortion-tolerant and could operate close to real-time. The en-
cryption algorithm encodes speech frames into energy, fundamental frequency, and the spectral
envelope shape. These three parameters correspond to perceptual speech qualities: loudness, pitch,
and timbre, and are crucial for preserving speech intelligibility. The sequence of energy and pitch
values are scrambled using a pseudo-random sequence of translations. In contrast, the spectral en-
velope shapes are firstly represented as unit vectors on the hypersphere S8, encoded to codewords
of a spherical group code on S15 using a flat torus mapping, and finally, rotated by elements from
a commutative group of 16× 16 orthogonal matrices.

The encryption unit encodes scrambled parameters into a wideband speech-like signal robust
to voice channel distortion. Upon reception of the signal at the receiving side, the decryption unit
extracts distorted copies of the vocal parameters and tries to reconstruct the original narrowband
speech. The speech synthesizer is a narrowband modification of the LPCNet algorithm with frame-
rate and sample-rate neural networks, and is trained to compensate for imperfections in speech
recordings and voice channel distortions.

The encryption scheme gives indistinguishable encryptions in the presence of an eavesdropper
when translations and rotations are selected according to the output of a secure binary PRNG with
a fresh seed. The relation between the scheme’s security and the PRNG underscores the need for
a trusted random bitstream generator convertible to a non-binary generator. This study points out
a bitstream generator published by NIST SP 800-90A based on AES-256 in the counter mode

2. https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/
diehard/

3. https://webhome.phy.duke.edu/~rgb/General/dieharder.php

https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
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of operation and a secret seed of 256 bits. Regardless of the selected generator, however, the
encryption scheme does not provide data integrity. Instead, it is mandatory to ensure a strong user
authentication level, for example, during the cryptographic key exchange.

The speech encryption scheme was experimentally implemented by using the Python program-
ming language and tested by simulations. These tests confirmed that encrypted signal is robust
against additive Gaussian noise at SNR = 15 dB and compression by Opus-Silk down to 48 kbps
bitrate. On the other hand, synthetic pseudo-speech is sensitive to phase-shift and synchronization
error larger than 0.3 milliseconds. As a result, precise synchronization in communication over real
voice channels becomes a mandatory requirement.

The preliminary computational complexity evaluation conducted on the experimental Python
implementation hints that speech encoding, enciphering, and speech synthesis may be carried
on high-end mobile phones nearly in real-time. However, our investigation did not cover many
elements of the whole communication system, such as maintaining synchronization and generating
secure random sequences. Thus, a careful complexity evaluation and optimization must precede
implementation of the scheme on portable devices.

The feasibility of secure voice communication using the proposed technique was validated by
real-world experiments. The precomputed pseudo-speech signal was sent over FaceTime between
two iPhones 6 connected to the same WiFi network. The received signal could be decrypted into
intelligible speech. Finally, we conducted an online perceptual speech quality assessment with a
group of about 40 non-native English speakers. The experiment showed that the quality of decryp-
ted speech gradually decays with growing channel distortion. The recordings used in the speech
quality assessment and the pseudo-speech signals recorded on the mobile phones are available
online. 4

Authenticated Key Exchange (AKE) protocol over voice channels

Secret voice communication over a voice channel must be preceded by computing and sharing
session keys in a secure and authenticated way. In some real-world scenarios, the exchange could
be performed only over the same voice channel and without access to a Public Key Infrastructure.
For this reason, we complemented the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key
exchange with a flexible authentication robust against channel fading. Our customized ECDHE
protocol could be used together with a key derivation algorithm (e.g., PBKDF2 [Kaliski, 2000,
Moriarty et al., 2017]) to produce all the necessary secret key material.

The protocol offers two ways of authentication, by cryptographic signatures (e.g., ECDSA
with the SHA256 function) and by Short Authentication Strings (SAS) compared vocally (e.g.,
eight hexadecimal numbers displayed on the device). Both authentication mechanisms are combi-
ned into a single mode of operation, as it simplifies signaling and allows users flexible authentica-
tion such as unilateral signature authentication. The message exchange between both parties over
the voice channel can be done using the introduced DoV technique.

Protocol properties such as Perfect Forward Secrecy (PFS) and injective agreement on the
session key were verified in a symbolic model by Tamarin Prover. The code used for verification
is available online. 5 Formal verification in the symbolic model gives higher confidence in the
protocol’s security. Nevertheless, the symbolic analysis has some limitations and must be followed
by verification using the computational model and then by implementation auditing.

4. https://github.com/PiotrKrasnowski/Speech_Encryption
5. https://github.com/PiotrKrasnowski/AKE_over_Voice

https://github.com/PiotrKrasnowski/Speech_Encryption
https://github.com/PiotrKrasnowski/AKE_over_Voice
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The protocol does not prevent the issue of the speakers skipping SAS verification. Moreover,
it is unclear whether a highly compressed speech signal, as in the case studied for our speech
encryption scheme, contains enough paralinguistic information to enable speaker identification.
These problems may be partially solved by introducing visual or acoustic effects encouraging a
proper comparison and adding informal contextual questions.

System limitations and conclusion of the study

This study did not cover several implementation aspects of the whole communication system,
such as signal synchronization, automatic adaptation to fluctuating channel characteristics, com-
putational complexity, and implementation security. Nonetheless, the investigation of real voice
channels and experimental results presented in this thesis strongly suggest that secure voice com-
munication over digital voice channels is technically viable. The requirement is a reliable connec-
tion between the speakers to enable encrypted data transmission without the risk of a signal blo-
ckage and a synchronization loss.

On the other hand, the variety of speech coding techniques and implicit algorithms implemen-
ted in voice channels cast doubt on whether a universal technique compatible with any arbitrary
voice channel can be found. Instead, it may be beneficial to dedicate the security system to some
selected types of channel, e.g., cellular networks, VoIP, and fixed IP-phones. Despite the narrower
range of targeted voice channels, the secure system should remain flexible to adapt to a particular
channel and fluctuating transmission conditions. The system’s flexibility could be enhanced by
robust resynchronization mechanisms, adaptive bitrate, energy equalization, and countering voice
detectors.

In some scenarios, requirements for connection stability, high throughput, and low channel
distortion cannot be met. Thus, initiating a secure voice connection should be preceded by channel
estimation. An interesting idea is to combine channel estimation with cryptographic key exchange
to reduce call setup duration. A successful key exchange followed by vocal verification could
become a good indicator of favorable channel conditions. Another solution is using dedicated
devices that do not alter recorded speech before forwarding the signal to the voice channel input.

The encountered limitations prevent the studied voice communication system from becoming
compatible with every arbitrary communication infrastructure. Nevertheless, the system can still
offer some autonomy relative to particular communication infrastructure and a stronger security
against spying malware. In our opinion, these advantages make the system a valuable complemen-
tary technique and justify further investigation.

Perspectives

Future work should focus on improving and extending the proposed techniques to make the
next steps towards a fully operational system implementation.

The flexibility of the proposed Data over Voice technique is not yet fully exploited. It is worth
experimenting with the automatic adjustment of the signal parameters depending on the fluctuating
channel characteristic. For example, the transmitter may adaptively modify the harmonic frequen-
cies and the size of the codebook used to minimize channel distortion at the receiving end. Mo-
reover, the transmitter may determine the best strategy for countering voice detectors by a sensible
combination of bandwidth alternation, amplitude variation, or silence insertion. Signal adaptation
methods should significantly improve communication robustness.
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An interesting direction to pursue is finding a better representation of speech parameters in
speech encryption, especially of timbre. The primary objective is to find a perceptually linear
speech representation that approximates distance relations in the perceptual domain. New speech
representations should be investigated together with pseudo-speech synthesis techniques, so that
signal distortion introduced by a voice channel would change speech perception in a quasi-linear
way. One of the propositions would be to represent timbre as Mel-Frequency Cepstral Coefficients
(MFCC) throughout all the processing steps.

Another research area is the use of machine learning techniques in secure speech commu-
nications. The experiments conducted so far indicate that neural-based voice synthesis improves
decrypted speech quality, helps to reduce the transmission data rate, and enables compensation of
distortion introduced by a particular voice channel. The multiple roles of neural networks suggest
that machine learning techniques may become an essential tool in future secure voice applications.
Some progress could be made by investigating new adapted network architectures, or by reducing
their computational complexity for use on portable devices. Besides, an exciting idea would be to
allow users to modify their voice characteristics without altering the linguistic content.

The symbolic protocol model described in this study should be extended by adding suitable
ciphers and detailing the protocol’s parameters to meet computational security requirements. The
complete protocol model could be combined with the introduced DoV technique and implemented
on prototype devices. In the final step, it may be worth combining key exchange with channel
estimation in the form of training sequences.
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tation of PCCD-OFDM-ASK robust data transmission over GSM speech channel. Informatica,
20, DOI: https://doi.org/10.15388/Informatica.2009.237.

[Micciancio and Goldwasser, 2012] Micciancio, D. and Goldwasser, S. (2012). Complexity of lat-
tice problems: a cryptographic perspective, volume 671. Springer Science & Business Media,
Ney York, NY.

[Miller et al., 1986] Miller, J. L., Green, K. P., and Reeves, A. (1986). Speaking rate and seg-
ments: A look at the relation between speech production and speech perception for the voicing
contrast. Phonetica, 43(1-3):106–115, DOI: https://doi.org/10.1159/000261764.

[Milner and Shao, 2006] Milner, B. and Shao, X. (2006). Clean speech reconstruction from
MFCC vectors and fundamental frequency using an integrated front-end. Speech Communica-
tion, 48(6):697–715, DOI: https://doi.org/10.1016/j.specom.2005.10.004.

[Moriarty et al., 2017] Moriarty, K., Kaliski, B., and Rusch, A. (2017). PKCS#5: Password-Based
Cryptography Specification Version 2.1. Technical Specification RFC 8018, IETF, https:
//tools.ietf.org/html/rfc8018.

https://www.jstor.org/stable/pdf/25051892.pdf
https://www.jstor.org/stable/pdf/25051892.pdf
https://eprint.iacr.org/2013/555.pdf
https://dx.doi.org/https://doi.org/10.1109/TASSP.1986.1164910
https://dx.doi.org/https://doi.org/10.1109/ICASSP.1996.540325
https://dx.doi.org/https://doi.org/10.1007/978-3-642-39799-8_48
http://www.aes.org/e-lib/browse.cfm?elib=19402
https://dx.doi.org/https://doi.org/10.1109/ICASSP.2007.367263
https://dx.doi.org/https://doi.org/10.15388/Informatica.2009.237
https://dx.doi.org/https://doi.org/10.1159/000261764
https://dx.doi.org/https://doi.org/10.1016/j.specom.2005.10.004
https://tools.ietf.org/html/rfc8018
https://tools.ietf.org/html/rfc8018


172 BIBLIOGRAPHY

[Morris et al., 2009] Morris, B., Rogaway, P., and Stegers, T. (2009). How to Encipher Mes-
sages on a Small Domain. In Advances in Cryptology - CRYPTO 2009. Springer, DOI:
https://doi.org/10.1007/978-3-642-03356-8_17.

[Müller, 1840] Müller, J. P. (1840). Handbuch der Physiologie des Menschen: für Vorlesungen.
Bd. 2, volume 2. J. Hölscher.

[Nee and Prasad, 2000] Nee, R. v. and Prasad, R. (2000). OFDM for Wireless Multimedia Com-
munications. Artech House, Boston, MT.

[Neubauer et al., 2007] Neubauer, A., Freudenberger, J., and Kuhn, V. (2007). Coding Theory:
Algorithms, Architectures and Applications. John Wiley & Sons, Chichester, UK.

[Nielsen et al., 2014] Nielsen, J. K., Christensen, M. G., Cemgil, A. T., and Jensen, S. H. (2014).
Bayesian Model Comparison With the g-Prior. IEEE Transactions on Signal Processing,
62(1):225–238, DOI: https://doi.org/10.1109/TSP.2013.2286776.

[Nielsen et al., 2017] Nielsen, J. K., Jensen, T. L., Jensen, J. R., Christensen, M. G., and Jensen,
S. H. (2017). Fast fundamental frequency estimation: Making a statistically efficient estima-
tor computationally efficient. Signal Processing, 135:188 – 197, ISSN: 0165-1684, DOI:
https://doi.org/10.1016/j.sigpro.2017.01.011.

[Nwe et al., 2003] Nwe, T. L., Foo, S. W., and De Silva, L. C. (2003). Speech emotion
recognition using hidden Markov models. Speech communication, 41(4):603–623, DOI:
https://doi.org/10.1016/S0167-6393(03)00099-2.

[Okabe et al., 2000] Okabe, A., Boots, B., Sugihara, K., and Nok Chiu, S. (2000). Spatial Tes-
sellations: Concepts and Applications of Voronoi Diagrams. Wiley, Hoboken, NJ, ISBN:
978-0-471-98635-5.

[O’Neill, 2014] O’Neill, M. E. (2014). PCG: A family of simple fast space-efficient statistically
good algorithms for random number generation. ACM Transactions on Mathematical Software.

[Oord et al., 2016] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, https://arxiv.org/abs/1609.03499.

[Özkan and Örs, 2015] Özkan, M. A. and Örs, S. B. (2015). Data transmission
via GSM voice channel for end to end security. In 2015 IEEE 5th Interna-
tional Conference on Consumer Electronics-Berlin (ICCE-Berlin). IEEE, DOI:
https://doi.org/10.1109/ICCE-Berlin.2015.7391285.

[Panayotov et al., 2015] Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Libris-
peech: An ASR corpus based on public domain audio books. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE,
DOI: https://doi.org/10.1109/ICASSP.2015.7178964.

[Park and Lee, 2018] Park, J. H. and Lee, D. H. (2018). FACE: fast AES CTR
mode encryption techniques based on the reuse of repetitive data. IACR Tran-
sactions on Cryptographic Hardware and Embedded Systems, pages 469–499, DOI:
https://doi.org/10.13154/tches.v2018.i3.469-499.

[Park et al., 2011] Park, J.-H., Paik, J.-H., and Lee, D.-H. (2011). Efficient implementation of
AES CTR Mode for a Mobile Environment. Journal of the KIISC, 21(5):47–58, https:
//www.koreascience.or.kr/article/JAKO201109649106054.pdf.

https://dx.doi.org/https://doi.org/10.1007/978-3-642-03356-8_17
https://dx.doi.org/https://doi.org/10.1109/TSP.2013.2286776
https://dx.doi.org/https://doi.org/10.1016/j.sigpro.2017.01.011
https://dx.doi.org/https://doi.org/10.1016/S0167-6393(03)00099-2
https://openlibrary.org/search?isbn=978-0-471-98635-5
https://arxiv.org/abs/1609.03499
https://dx.doi.org/https://doi.org/10.1109/ICCE-Berlin.2015.7391285
https://dx.doi.org/https://doi.org/10.1109/ICASSP.2015.7178964
https://dx.doi.org/https://doi.org/10.13154/tches.v2018.i3.469-499
https://www.koreascience.or.kr/article/JAKO201109649106054.pdf
https://www.koreascience.or.kr/article/JAKO201109649106054.pdf


BIBLIOGRAPHY 173

[Pasini and Vaudenay, 2006] Pasini, S. and Vaudenay, S. (2006). SAS-Based Authenticated
Key Agreement. In Public Key Cryptography - PKC 2006, pages 395–409. Springer, DOI:
https://doi.org/10.1007/11745853_26.

[Patro et al., 2011] Patro, A., Ma, Y., Panahi, F., Walker, J., and Banerjee, S. (2011). A sys-
tem for audio signalling based NAT Traversal. In 2011 Third International Conference
on Communication Systems and Networks (COMSNETS 2011), pages 1–10. IEEE, DOI:
https://doi.org/10.1109/COMSNETS.2011.5716432.

[Princen et al., 1987] Princen, J., Johnson, A., and Bradley, A. (1987). Subband/transform coding
using filter bank designs based on time domain aliasing cancellation. In ICASSP’87. IEEE
International Conference on Acoustics, Speech, and Signal Processing, volume 12, pages 2161–
2164. IEEE, DOI: https://doi.org/10.1109/ICASSP.1987.1169405.

[Ptacek and Sander, 1966] Ptacek, P. H. and Sander, E. K. (1966). Age recogni-
tion from voice. Journal of speech and hearing Research, 9(2):273–277, DOI:
https://doi.org/10.1044/jshr.0902.273.

[Purves et al., 2018] Purves, D., Augustine, G. J., Flitzpatrick, D. A., Hall, W. C., LaMantia, A.-
S., Mooney, R. D., Platt, M. L., and White, L. E. (2018). Neuroscience, 6th Edition. Sunderland:
Sinauer Associates, Inc, Sunderland, MA, ISBN: 978-16-053-5380-7.

[Quynh, 2012] Quynh, D. (2012). Recommendation for Applications Using Approved
Hash Algorithms. Technical report, National Institute of Standards and Technology,
https://www.nist.gov/publications/recommendation-applications-
using-approved-hash-algorithms.

[Rabiner and Schafer, 2011] Rabiner, L. R. and Schafer, R. W. (2011). Theory and applications
of digital speech processing. Pearson, Upper Saddle River, NJ.

[Ramasubramanian and Doddala, 2015] Ramasubramanian, V. and Doddala, H.
(2015). Ultra Low Bit-Rate Speech Coding. Springer, New York, NY, DOI:
https://doi.org/10.1007/978-1-4939-1341-1.

[Rashidi et al., 2008] Rashidi, M., Sayadiyan, A., and Mowlaee, P. (2008). A Harmonic Approach
to Data Transmission over GSM Voice Channel. In 2008 3rd International Conference on
Information and Communication Technologies: From Theory to Applications, pages 1–4. IEEE,
DOI: https://doi.org/10.1109/ICTTA.2008.4530052.

[Reddi et al., 2018] Reddi, S. J., Kale, S., and Kumar, S. (2018). On the Convergence of Adam
and Beyond. In International Conference on Learning Representations. OpenReview.net,
https://openreview.net/forum?id=ryQu7f-RZ.

[Rescorla, 2018] Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3.
Technical report, IETF, https://tools.ietf.org/html/rfc8446.

[Rogers, 1881] Rogers, J. B. (1881). Telephony. 251,292.

[Rothweiler, 1983] Rothweiler, J. (1983). Polyphase quadrature filters–a new sub-
band coding technique. In ICASSP’83. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, volume 8, pages 1280–1283. IEEE, DOI:
https://doi.org/10.1109/ICASSP.1983.1172005.

[Rusinowitch and Turuani, 2003] Rusinowitch, M. and Turuani, M. (2003). Proto-
col insecurity with a finite number of sessions and composed keys is NP-complete.

https://dx.doi.org/https://doi.org/10.1007/11745853_26
https://dx.doi.org/https://doi.org/10.1109/COMSNETS.2011.5716432
https://dx.doi.org/https://doi.org/10.1109/ICASSP.1987.1169405
https://dx.doi.org/https://doi.org/10.1044/jshr.0902.273
https://openlibrary.org/search?isbn=978-16-053-5380-7
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-algorithms
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-algorithms
https://dx.doi.org/https://doi.org/10.1007/978-1-4939-1341-1
https://dx.doi.org/https://doi.org/10.1109/ICTTA.2008.4530052
https://openreview.net/forum?id=ryQu7f-RZ
https://tools.ietf.org/html/rfc8446
https://dx.doi.org/https://doi.org/10.1109/ICASSP.1983.1172005


174 BIBLIOGRAPHY

Theoretical Computer Science, 299(1):451 – 475, ISSN: 0304-3975, DOI:
https://doi.org/10.1016/S0304-3975(02)00490-5.

[Salami et al., 1998] Salami, R., Laflamme, C., Adoul, J., Kataoka, A., Hayashi, S., Moriya, T.,
Lamblin, C., Massaloux, D., Proust, S., Kroon, P., and Shoham, Y. (1998). Design and descrip-
tion of CS-ACELP: a toll quality 8 kb/s speech coder. IEEE Transactions on Speech and Audio
Processing, 6(2):116–130, DOI: https://doi.org/10.1109/89.661471.

[Sapozhnykov and Fienberg, 2012] Sapozhnykov, V. V. and Fienberg, K. S. (2012). A low-rate
data transfer technique for compressed voice channels. Journal of Signal Processing Systems,
DOI: https://doi.org/10.1007/s11265-011-0594-x.

[Schmidt et al., 2012] Schmidt, B., Meier, S., Cremers, C., and Basin, D. (2012). Au-
tomated Analysis of Diffie-Hellman Protocols and Advanced Security Properties. In
2012 IEEE 25th Computer Security Foundations Symposium, pages 78–94. IEEE, DOI:
https://doi.org/10.1109/CSF.2012.25.

[Schmidt et al., 2014] Schmidt, B., Sasse, R., Cremers, C., and Basin, D. (2014). Automated
Verification of Group Key Agreement Protocols. In 2014 IEEE Symposium on Security and
Privacy, pages 179–194. IEEE, DOI: https://doi.org/10.1109/SP.2014.19.

[Schoeffler et al., 2018] Schoeffler, M., Bartoschek, S., Stöter, F.-R., Roess, M., West-
phal, S., Edler, B., and Herre, J. (2018). webMUSHRA—A comprehensive frame-
work for web-based listening tests. Journal of Open Research Software, 6(1), DOI:
https://doi.org/10.5334/jors.187.

[Schoeffler et al., 2015] Schoeffler, M., Stöter, F.-R., Edler, B., and Herre, J. (2015). Towards the
next generation of web-based experiments: A case study assessing basic audio quality following
the ITU-R recommendation BS. 1534 (MUSHRA). In 1st Web Audio Conference, pages 1–6.
https://wac.ircam.fr/pdf/wac15_submission_8.pdf.

[Schroeder and Atal, 1985] Schroeder, M. and Atal, B. (1985). Code-excited linear prediction
(CELP): High-quality speech at very low bit rates. In ICASSP ’85. IEEE International Confe-
rence on Acoustics, Speech, and Signal Processing, volume 10, pages 937–940. IEEE, DOI:
https://doi.org/10.1109/ICASSP.1985.1168147.

[Schulze and Lüders, 2005] Schulze, H. and Lüders, C. (2005). Theory and Applications of
OFDM and CDMA: Wideband Wireless Communications. John Wiley & Sons, Chichester,
GB.

[Schwartz, 2005] Schwartz, M. (2005). Mobile Wireless Communications. Cambridge University
Press, Cambridge, UK.

[Scott-Railton et al., 2017] Scott-Railton, J., Marczak, B., Razzak, B. A., Crete-Nishihata, M.,
and Deibert, R. (2017). Reckless Exploit: Mexican Journalists, Lawyers, and a Child Targeted
with NSO Spyware. Report, The Citizen Lab, https://tspace.library.utoronto.
ca/bitstream/1807/96731/1/Report%2393--recklessexploit.pdf. Ac-
cessed 13 July 2020.

[Sethares, 2004] Sethares, W. A. (2004). Tuning, Timbre, Spectrum, Scale. Springer, Berlin Hei-
delberg, Germany.

[Shahbazi et al., 2010] Shahbazi, A., Rezaei, A. H., Sayadiyan, A., and Mosayyebpour, S. (2010).
Data transmission over GSM adaptive multi rate voice channel using speech-like sym-
bols. In 2010 International Conference on Signal Acquisition and Processing. IEEE, DOI:
https://doi.org/10.1109/ICSAP.2010.72.

https://dx.doi.org/https://doi.org/10.1016/S0304-3975(02)00490-5
https://dx.doi.org/https://doi.org/10.1109/89.661471
https://dx.doi.org/https://doi.org/10.1007/s11265-011-0594-x
https://dx.doi.org/https://doi.org/10.1109/CSF.2012.25
https://dx.doi.org/https://doi.org/10.1109/SP.2014.19
https://dx.doi.org/https://doi.org/10.5334/jors.187
https://wac.ircam.fr/pdf/wac15_submission_8.pdf
https://dx.doi.org/https://doi.org/10.1109/ICASSP.1985.1168147
https://tspace.library.utoronto.ca/bitstream/1807/96731/1/Report%2393--recklessexploit.pdf
https://tspace.library.utoronto.ca/bitstream/1807/96731/1/Report%2393--recklessexploit.pdf
https://dx.doi.org/https://doi.org/10.1109/ICSAP.2010.72


BIBLIOGRAPHY 175

[Shahbazi et al., 2009] Shahbazi, A., Rezaie, A. H., Sayadiyan, A., and Mosayyebpour, S. (2009).
A novel speech-like symbol design for data transmission through GSM voice channel. In 2009
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).
IEEE, DOI: https://doi.org/10.1109/ISSPIT.2009.5407541.

[Shannon, 1949] Shannon, C. E. (1949). Communication theory of se-
crecy systems. The Bell system technical journal, 28(4):656–715, DOI:
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x.

[Shirvanian et al., 2018] Shirvanian, M., Saxena, N., and Mukhopadhyay, D. (2018).
Short voice imitation man-in-the-middle attacks on Crypto Phones: Defeating
humans and machines. Journal of Computer Security, 26:311 – 333, DOI:
https://doi.org/10.3233/JCS-17970.

[Siedenburg et al., 2016] Siedenburg, K., Fujinaga, I., and McAdams, S. (2016). A
Comparison of Approaches to Timbre Descriptors in Music Information Retrie-
val and Music Psychology. Journal of New Music Research, 45(1):27–41, DOI:
https://doi.org/10.1080/09298215.2015.1132737.

[Siqueira and Costa, 2008] Siqueira, R. M. and Costa, S. I. (2008). Flat tori, lattices and bounds
for commutative group codes. Designs, Codes and Cryptography, 49(1-3):307–321, DOI:
https://doi.org/10.1007/s10623-008-9183-9.

[Sivian, 1928] Sivian, L. J. (1928). System for Secret Signaling. 1,654,900.
[Slepian, 1968] Slepian, D. (1968). Group codes for the Gaus-

sian channel. Bell System Technical Journal, 47(4):575–602, DOI:
https://doi.org/10.1002/j.1538-7305.1968.tb02486.x.

[Slepian and Pollak, 1961] Slepian, D. and Pollak, H. O. (1961). Prolate spheroidal wave func-
tions, Fourier analysis and uncertainty—I. Bell System Technical Journal, 40(1):43–63, DOI:
https://doi.org/10.1002/j.1538-7305.1961.tb03976.x.

[Soong and Juang, 1984] Soong, F. and Juang, B. (1984). Line spectrum pair (LSP)
and speech data compression. In ICASSP ’84. IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 9, pages 37–40. IEEE, DOI:
https://doi.org/10.1109/ICASSP.1984.1172448.

[Stefanov and Shi, 2012] Stefanov, E. and Shi, E. (2012). FastPRP: Fast Pseudo-Random Permu-
tations for Small Domains. IACR Cryptology ePrint Report 2012/254, https://eprint.
iacr.org/2012/254.pdf.

[Stevens, 1956] Stevens, S. S. (1956). The direct estimation of sensory ma-
gnitudes: Loudness. The American journal of psychology, 69(1):1–25, DOI:
https://doi.org/10.2307/1418112.

[Stevens et al., 1937] Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A scale for the
measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of
America, 8(3):185–190, DOI: https://doi.org/10.1121/1.1915893.

[Sugar, 1974] Sugar, G. R. (1974). Voice Privacy Equipment for Law Enforcement Communica-
tion Systems. National Institute of Law Enforcement and Criminal Justice.

[Syrdal and Gopal, 1986] Syrdal, A. and Gopal, H. (1986). A perceptual model of
vowel recognition based on the auditory representation of American English vo-
wels. The Journal of the Acoustical Society of America, 79(4):1086–1100, DOI:
https://doi.org/10.1121/1.393381.

https://dx.doi.org/https://doi.org/10.1109/ISSPIT.2009.5407541
https://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://dx.doi.org/https://doi.org/10.3233/JCS-17970
https://dx.doi.org/https://doi.org/10.1080/09298215.2015.1132737
https://dx.doi.org/https://doi.org/10.1007/s10623-008-9183-9
https://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1968.tb02486.x
https://dx.doi.org/https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
https://dx.doi.org/https://doi.org/10.1109/ICASSP.1984.1172448
https://eprint.iacr.org/2012/254.pdf
https://eprint.iacr.org/2012/254.pdf
https://dx.doi.org/https://doi.org/10.2307/1418112
https://dx.doi.org/https://doi.org/10.1121/1.1915893
https://dx.doi.org/https://doi.org/10.1121/1.393381


176 BIBLIOGRAPHY

[Szczerba and Czyzewski, 2005] Szczerba, M. and Czyzewski, A. (2005). Pitch detection enhan-
cement employing music prediction. Journal of Intelligent Information Systems, 24(2-3):223–
251, DOI: https://doi.org/10.1007/s10844-005-0324-6.

[Tahir et al., 2017] Tahir, B., Schwarz, S., and Rupp, M. (2017). BER comparison between convo-
lutional, Turbo, LDPC, and Polar codes. In 2017 24th international conference on telecommu-
nications (ICT). IEEE, DOI: https://doi.org/10.1109/ICT.2017.7998249.

[Taleb Ali et al., 2013] Taleb Ali, B., Baudoin, G., and Venard, O. (2013). Data transmis-
sion over mobile voice channel based on M-FSK modulation. In 2013 IEEE Wire-
less Communications and Networking Conference (WCNC), pages 4416–4421. IEEE, DOI:
https://doi.org/10.1109/WCNC.2013.6555289.

[Tasko and Westbury, 2004] Tasko, S. M. and Westbury, J. R. (2004). Speed–curvature rela-
tions for speech-related articulatory movement. Journal of Phonetics, 32(1):65–80, DOI:
https://doi.org/10.1016/S0095-4470(03)00006-8.

[Terasawa et al., 2012] Terasawa, H., Berger, J., and Makino, S. (2012). In Search of a Per-
ceptual Metric for Timbre: Dissimilarity Judgments among Synthetic Sounds with MFCC-
Derived Spectral Envelopes. J. Audio Eng. Soc, 60(9):674–685, http://www.aes.org/e-
lib/browse.cfm?elib=16372.

[Terasawa et al., 2005] Terasawa, H., Slaney, M., and Berger, J. (2005). A timbre space for
speech. In INTERSPEECH 2005 - Eurospeech, 9th European Conference on Speech Commu-
nication and Technology, pages 1729–1732. ISCA, https://www.isca-speech.org/
archive/archive_papers/interspeech_2005/i05_1729.pdf.

[Terpstra et al., 2010] Terpstra, D., Jagode, H., You, H., and Dongarra, J. (2010).
Collecting Performance Data with PAPI-C. In Müller, M. S., Resch, M. M.,
Schulz, A., and Nagel, W. E., editors, Tools for High Performance Compu-
ting 2009, pages 157–173, Berlin, Heidelberg. Springer Berlin Heidelberg, DOI:
https://doi.org/10.1007/978-3-642-11261-4_11.

[Tex et al., 2018] Tex, C., Schäler, M., and Böhm, K. (2018). Towards meaningful distance-
preserving encryption. In Proceedings of the 30th International Conference on Scientific and
Statistical Database Management, pages 1–12. Association for Computing Machinery, DOI:
https://doi.org/10.1145/3221269.3223029.

[Torezzan et al., 2013] Torezzan, C., Costa, S. I. R., and Vaishampayan, V. A. (2013). Construc-
tive Spherical Codes on Layers of Flat Tori. IEEE Transactions on Information Theory,
59(10):6655–6663, DOI: https://doi.org/10.1109/TIT.2013.2272931.

[Torezzan et al., 2015] Torezzan, C., Strapasson, J. E., Costa, S. I., and Siqueira, R. M. (2015).
Optimum commutative group codes. Designs, Codes and Cryptography, 74(2):379–394, DOI:
https://doi.org/10.1007/s10623-013-9867-7.

[Tsay and Mjølsnes, 2012] Tsay, J.-K. and Mjølsnes, S. F. (2012). A Vulnerability in the UMTS
and LTE Authentication and Key Agreement Protocols. In International Conference on Ma-
thematical Methods, Models, and Architectures for Computer Network Security, pages 65–76.
Springer, DOI: https://doi.org/10.1007/978-3-642-33704-8_6.

[Tsoukalas et al., 1997] Tsoukalas, D. E., Mourjopoulos, J. N., and Kokkinakis, G. (1997).
Speech Enhancement Based on Audible Noise Suppression. IEEE Transactions on Speech
and Audio Processing, 5, DOI: https://doi.org/10.1109/89.641296.

https://dx.doi.org/https://doi.org/10.1007/s10844-005-0324-6
https://dx.doi.org/https://doi.org/10.1109/ICT.2017.7998249
https://dx.doi.org/https://doi.org/10.1109/WCNC.2013.6555289
https://dx.doi.org/https://doi.org/10.1016/S0095-4470(03)00006-8
http://www.aes.org/e-lib/browse.cfm?elib=16372
http://www.aes.org/e-lib/browse.cfm?elib=16372
https://www.isca-speech.org/archive/archive_papers/interspeech_2005/i05_1729.pdf
https://www.isca-speech.org/archive/archive_papers/interspeech_2005/i05_1729.pdf
https://dx.doi.org/https://doi.org/10.1007/978-3-642-11261-4_11
https://dx.doi.org/https://doi.org/10.1145/3221269.3223029
https://dx.doi.org/https://doi.org/10.1109/TIT.2013.2272931
https://dx.doi.org/https://doi.org/10.1007/s10623-013-9867-7
https://dx.doi.org/https://doi.org/10.1007/978-3-642-33704-8_6
https://dx.doi.org/https://doi.org/10.1109/89.641296


BIBLIOGRAPHY 177

[Utkovski and Lindner, 2006] Utkovski, Z. and Lindner, J. (2006). On The Construction of Non-
coherent Space Time Codes from High-dimensional Spherical Codes. In 2006 IEEE Ninth
International Symposium on Spread Spectrum Techniques and Applications, pages 327–331.
IEEE, DOI: https://doi.org/10.1109/ISSSTA.2006.311788.

[Valin and Skoglund, 2019] Valin, J. and Skoglund, J. (2019). LPCNET: Improving Neural
Speech Synthesis through Linear Prediction. In ICASSP 2019 - 2019 IEEE International Confe-
rence on Acoustics, Speech and Signal Processing (ICASSP), pages 5891–5895. IEEE, DOI:
https://doi.org/10.1109/ICASSP.2019.8682804.

[Valin and Skoglund, 2019] Valin, J.-M. and Skoglund, J. (2019). A Real-Time Wi-
deband Neural Vocoder at 1.6kb/s Using LPCNet. In Proceedings of INTER-
SPEECH, pages 3406–3410. International Speech Communication Association, DOI:
https://doi.org/10.21437/Interspeech.2019-1255.

[Valin et al., 2012] Valin, J.-M., Vos, K., and Terriberry, T. (2012). Definition of the Opus Audio
Codec. Technical Specification RFC 6176, IETF, https://tools.ietf.org/html/
rfc6716.

[Venkataramani et al., 2003] Venkataramani, R., Kramer, G., and Goyal, V. K. (2003). Mul-
tiple description coding with many channels. IEEE Transactions on Information Theory,
49(9):2106–2114, DOI: https://doi.org/10.1109/TIT.2003.815767.

[Vernam, 1919] Vernam, G. S. (1919). Secret Signaling System. 1,310,719.

[Vernam, 1926] Vernam, G. S. (1926). Cipher printing telegraph systems: For secret wire
and radio telegraphic communications. Journal of the AIEE, 45(2):109–115, DOI:
https://doi.org/10.1109/T-AIEE.1926.5061224.

[Viazovska, 2017] Viazovska, M. S. (2017). The sphere packing pro-
blem in dimension 8. Annals of Mathematics, pages 991–1015, DOI:
https://doi.org/10.4007/annals.2017.185.3.7.

[Vogt and André, 2006] Vogt, T. and André, E. (2006). Improving Automatic Emotion Recog-
nition from Speech via Gender Differentiaion. In Proc. Language Resources and Evalua-
tion Conference (LREC 2006), pages 1123–1126. Multimodale Mensch-Technik Interaktion,
http://www.lrec-conf.org/proceedings/lrec2006/pdf/392_pdf.pdf.

[Von Békésy and Wever, 1960] Von Békésy, G. and Wever, E. G. (1960). Experiments in hearing,
volume 8. McGraw-Hill, New York, NJ.
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A Authenticated Key Exchange Protocol

The code below is the Tamarin file ‘AKE_over_Voice.spthy’ describing the authenticated key
exchange (AKE) protocol illustrated in Figure 6.7 in Chapter 6. The code is also available online. 6

The first file section details special events. The rule Generate_pk generates a signature
private/public key pair (!Ltk($U,∼ ltk), !Pk($U, pk(∼ ltk))) for arbitrary user U. The rule
Reveal_ltk compromises a user U and reveals her signing key ltk to the adversary. Finally, the
rules VoiceChannelOut and VoiceChannelIn symbolize two ends of a channel used in vocal ve-
rification. In contrast to other rules, the output of VoiceChannelOut cannot be modified by the
adversary without being revealed at the rule VoiceChannelIn.

The second file section describes the interaction between the Initiator (Alice) and the Re-
sponder (Bob). In the exchange, users share their identifiers, public keys, nonces, signatures, and
hashes. The participants commit to all values and verify received hashes. A scenario when a user
cannot verify the digital signature is solved by introducing alternative rules Alice_2_nosign and
Bob_2_nosign. Mutual vocal verification is symbolized by the rule Compare_SAS. The correct
protocol interaction can be checked by running lemmas executable1 and executable2.

In the third part, the code specifies security lemmas. The lemmas Non_Injective_Agreement
and Injective_Agreement verify respectively non-injective and injective agreements between
participants assuming signature or vocal authentication. The secrecy of the Session Key is
checked by lemmas Session_Key_Secrecy and Perfect_Forward_Secrecy. The last lemmas
Impersonation_with_signature, Reflection_with_signature, and Reflection_no_signature,
test protocol’s resilience against user impersonation and reflections.

The presented code can be directly loaded by Tamarin 7 and verified. The verification process
takes about 10 minutes under Ubuntu kernel 5.8.0-25 and using Intel Core i7 2.9 GHz without
multi-threading.

theory AKE_over_voice_channels
begin

builtins: diffie-hellman, signing, hashing

// Generation of the key pair

rule Generate_pk:
[ Fr(~ltk) ]
--[ Generate($U) ]->
[ !Ltk( $U, ~ltk ), !Pk( $U, pk(~ltk) ) ]

6. https://github.com/PiotrKrasnowski/AKE_over_Voice
7. https://tamarin-prover.github.io/
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// Adversary reveals the secret key

rule Reveal_ltk:
[ !Ltk( A, ltk ) ]

--[ LtkReveal( A ) ]->
[ Out(ltk) ]

// Authenticated channel

rule VoiceChannelOut:
[ Out_A( $A, $B, x ) ] --[ ChanOut_A( $A, $B, x ) ]->

[ !Auth( $A, x ), Out(< $A, $B, x >) ]

rule VoiceChannelIn:
[ !Auth( $A, x ), In($B) ] --[ ChanIn_A( $A, $B, x ) ]->

[ In_A( $A, $B, x ) ]

// Protocol rules

rule Alice_1:
[ Fr(~ekA)
, Fr(~NA)
, Fr(~RA) ]
-->
[ Alice_1( $A, ~NA, ~ekA, ~RA )
, Out(< $A, ~NA, ’g’ ^ ~ekA, h(< $A, ~NA, ’g’ ^ ~ekA, ~RA >) >) ]

rule Alice_2:
[ Alice_1( $A, ~NA, ~ekA, ~RA)
, !Ltk( $A, ltkA )
, !Pk( $B, pk(ltkB) )
, In(< $B, NB, Y, RB,

sign{’B’, $B, $A, NB, ~NA, Y, ’g’ ^ ~ekA }ltkB >)
]

--[ SessionKey( $A, $B, < $A, $B, ~NA, NB, Y ^ ~ekA >,
h(< ~RA, RB, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y >) )

, Running( ’B’, $B, $A, < $A, $B, ~NA, NB, Y ^ ~ekA >)
, Compare_RA( h(< $A, ~NA, ’g’ ^ ~ekA, ~RA >),

h(< $A, ~NA, ’g’ ^ ~ekA, ~RA >) )
, Commit_S( ’A’, $A, $B, < $A, $B, ~NA, NB, Y ^ ~ekA >,

h(< ~RA, RB, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y >) ) ]->
[ Out(< ~RA, sign{ ’A’, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y }ltkA >)
, Out_A( $A, $B, h(< ~RA, RB, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y >) ) ]
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rule Alice_2_nosign:
[ Alice_1( $A, ~NA, ~ekA, ~RA)
, !Ltk( $A, ltkA )
, In(< $B, NB, Y, RB, S >)
]

--[ SessionKey( $A, $B, < $A, $B, ~NA, NB, Y ^ ~ekA >,
h(< ~RA, RB, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y >) )

, Running( ’B’, $B, $A, < $A, $B, ~NA, NB, Y ^ ~ekA >)
, Compare_RA( h(< $A, ~NA, ’g’ ^ ~ekA, ~RA >),

h(< $A, ~NA, ’g’ ^ ~ekA, ~RA >) )
, Commit( ’A’, $A, $B, < $A, $B, ~NA, NB, Y ^ ~ekA >,

h(< ~RA, RB, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y >) ) ]->
[ Out(< ~RA, sign{ ’A’, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y }ltkA >)
, Out_A( $A, $B, h(< ~RA, RB, $A, $B, ~NA, NB, ’g’ ^ ~ekA, Y >) ) ]

rule Bob_1:
[ Fr(~ekB)
, Fr(~NB)
, Fr(~RB)
, !Ltk( $B, ltkB )
, In(< $A, NA, X, hRA >)
]

--[ Running( ’A’, $A, $B, <$A, $B, NA, ~NB, X ^ ~ekB >) ]->
[

Bob_1( $B, $A, ~NB, NA, ~ekB, X, ~RB, hRA)
, Out(< $B, ~NB, ’g’ ^ ~ekB, ~RB,

sign{ ’B’, $B, $A, ~NB, NA, ’g’ ^ ~ekB, X }ltkB >) ]

rule Bob_2:
[

Bob_1( $B, $A, ~NB, NA, ~ekB, X, ~RB, hRA )
, !Pk( $A, pk(ltkA) )
, In(< RA, sign{ ’A’, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB }ltkA >)
]

--[ Compare_RA( hRA, h(< $A, NA, X, RA >) )
, SessionKey( $B, $A, < $A, $B, NA, ~NB, X ^ ~ekB >,

h(< RA, ~RB, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB >))
, Commit_S( ’B’, $B, $A, < $A, $B, NA, ~NB, X ^ ~ekB >,

h(< RA, ~RB, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB >) ) ]->
[
Out_A( $B, $A, h(< RA, ~RB, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB >) )

]
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rule Bob_2_nosign:
[ Bob_1( $B, $A, ~NB, NA, ~ekB, X, ~RB, hRA )
, In(< RA, S >)
]

--[ Compare_RA( hRA, h(< $A, NA, X, RA >) )
, SessionKey( $B, $A, < $A, $B, NA, ~NB, X ^ ~ekB >,

h(< RA, ~RB, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB >))
, Commit( ’B’, $B, $A, < $A, $B, NA, ~NB, X ^ ~ekB >,

h(< RA, ~RB, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB >) ) ]->
[
Out_A( $B, $A, h(< RA, ~RB, $A, $B, NA, ~NB, X, ’g’ ^ ~ekB >) )
]

rule Compare_SAS:
[
In_A( $A, $B, sequenceA ), In_A( $B, $A, sequenceB )

]
--[ CompareSAS( ’A’, $A, $B, sequenceA, sequenceB )

, CompareSAS( ’B’, $B, $A, sequenceB, sequenceA ) ]-> []

// lemmas

lemma executable1 :
exists-trace

"Ex A B sessKey SAS hRA #i #j #k.
Commit( ’A’, A, B, sessKey, SAS ) @ i &
Compare_RA( hRA, hRA ) @ i &

Commit( ’B’, B, A, sessKey, SAS ) @ j &
Compare_RA( hRA, hRA ) @ j &

CompareSAS( ’A’, A, B, SAS, SAS ) @ k &
CompareSAS( ’B’, B, A, SAS, SAS ) @ k &

not( A = B ) &
not( Ex U #m . LtkReveal(U) @ m )"

lemma executable2 :
exists-trace
"Ex A B sessKey SAS #i #j.

Commit_S( ’A’, A, B, sessKey, SAS ) @ i &
Commit_S( ’B’, B, A, sessKey, SAS ) @ j &
not( A = B ) &
not( Ex U #k . LtkReveal(U) @ k )"
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// authentication lemmas

lemma Non_Injective_Agreement :
" //signed
(
All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> ( Ex #j. Running( role, U1, U2, sessKey ) @ j )

// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)
& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #j.

// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i &
//Compare_RA( hRA, hRA ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ j & not( U1 = U2 )
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> ( Ex #k. Running( role, U1, U2, sessKey) @ k)

// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)"

lemma Non_Injective_Agreement_no_sign_nor_SAS :
exists-trace
"not All role U1 U2 sessKey SAS #i.

// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i
// but U2 was NOT running the protocol with U1
==> ( Ex #k. Running( role, U1, U2, sessKey ) @ k )

// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )"
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lemma Injective_Agreement :
" //signed
(
All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> (Ex #j. Running( role, U1, U2, sessKey ) @ j & j < i
// and there is a unique matching instance
& not ( Ex U3 U4 #i2. Commit_S( role, U3, U4, sessKey, SAS )

@i2 & not ( #i2 = #i ) )
& not ( Ex U3 U4 #i2. Commit( role, U3, U4, sessKey, SAS )

@i2 & not ( #i2 = #i ) ) )
// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)
& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #j.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i & not( U1 = U2 ) &
CompareSAS( role, U1, U2, SAS, SAS ) @ j
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> ( Ex #k. Running( role, U1, U2, sessKey ) @ k & k < j
// and there is a unique matching instance
& not ( Ex U3 U4 #i2. Commit_S( role, U3, U4, sessKey, SAS )

@ i2 & not ( #i2 = #i ) )
& not ( Ex U3 U4 #i2. Commit( role, U3, U4, sessKey, SAS )

@ i2 & not ( #i2 = #i ) ) )
// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)"
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lemma Injective_Agreement_no_sign_nor_SAS :
exists-trace
"not All role U1 U2 sessKey SAS #i.

// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i & not( U1 = U2 )
// but U2 was NOT running the protocol with U1
// or there is another matching instance
==> (Ex #k. Running( role, U1, U2, sessKey ) @ k & k < i

& not (Ex U3 U4 #i2. Commit_S( role, U3, U4, sessKey, SAS )
@ i2 & not (#i2 = #i ) )

& not (Ex U3 U4 #i2. Commit( role, U3, U4, sessKey, SAS )
@ i2 & not (#i2 = #i ) ) )

// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )"

// secrecy lemmas

lemma Session_Key_Secrecy :
" //signed
(
All role U1 U2 sessKey SAS #i #l.

// user U1 playing a role ’role’ completed
// a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
Commit_S( role, U1, U2, sessKey, SAS ) @ i &
// but the adversary knows the key anyway
K(sessKey) @ l
// then the adversary revealed a secret key of the user U2
==>
Ex #r. LtkReveal(U2) @ r

)
& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #k #l.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ k & not( U1 = U2 ) &
// but the adversary knows the key anyway
K(sessKey) @ l
// then the adversary revealed a secret key of the user U2
==>
Ex #r. LtkReveal(U2) @ r

) "
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lemma Session_Key_Secrecy_no_sign_nor_SAS :
exists-trace
"not All U1 U2 sessKey SAS #i #j.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
// but the adversary knows the key anyway
K(sessKey) @ j
==>
// then the adversary revealed a secret key of the user U2
Ex #r. LtkReveal(U2) @ r"

lemma Perfect_Forward_Secrecy :
" //signed
(
All role U1 U2 sessKey SAS #i #l.

// user U1 playing a role ’role’ completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
Commit_S( role, U1, U2, sessKey, SAS ) @ i &
// but the adversary knows the key anyway
K(sessKey) @ l
==>
// then the adversary revealed a secret key of the user U2 earlier
Ex #r. LtkReveal(U2) @ r & r < i

)
& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #k #l.

// user U1 playing a role ’role’ completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ k & not( U1 = U2 ) &
// but the adversary knows the key anyway
K(sessKey) @ l
==>
// then the adversary revealed a secret key of the user U2 earlier
Ex #r. LtkReveal(U2) @ r & r < i

)"
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// other lemmas

lemma Impersonation_with_signature :
"All role U1 U2 sessKey SAS #i.

// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i & not( U1 = U2 ) &
// but U2 was NOT running the protocol
// with U1 (adversary impersonated U2)
not( Ex #j. Running( role, U1, U2, sessKey ) @ j & j < i )
// then the adversary revealed
// a secret key of the user U2 earlier
==>
Ex #r. LtkReveal(U2) @ r & r < i"

lemma Reflection_with_signature :
"All role U1 U2 sessKey SAS #i.

// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i &
// and was not running the protocol as both roles at the same time
// (this configuration is not possible in the analyzed case)
// (moreover, U1 would be aware of the double role)
not( Ex role2 #j. Running( role2, U1, U2, sessKey )

@ j & not( role = role2 ) )
==>
// then U1 is different than U2
not( U1 = U2 )"

lemma Reflection_no_signature :
exists-trace
"not All role U1 U2 sessKey SAS #i #j.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ j &
// and was not running the protocol as both roles at the same time
// (this configuration is not possible in the analyzed case)
// (moreover, U1 would be aware of the double role)
not( Ex role2 #k. Running( role2, U1, U2, sessKey)

@ k & not( role = role2 ) )
==>
// but U1 is U2
not( U1 = U2 )"

end
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B Authenticated Key Exchange Protocol with Identity Protection

The code below is the Tamarin file ‘AKE_over_Voice_with_Identity_Protection.spthy’ descri-
bing the authenticated key exchange (AKE) protocol with identity protection illustrated in Figure
6.8 in Chapter 6. The code is also available online. 8

Compared to the protocol model presented in Annex A, the Responder and the Initiator enci-
pher their identifiers using a function senc(data, symmetric_key) that denotes encryption with a
symmetric key. Furthermore, the participants generate two sets of random nonces NA1, NA2 and
NB1, NB2 for deriving a temporary symmetric key and the Session Key. Finally, a new restriction
Verify_hRA was added, which obliges the Responder to verify the received hash. The security
lemmas remained unchanged.

The presented code can be directly loaded by Tamarin 9 and verified. The verification process
takes about 10 minutes under Ubuntu kernel 5.8.0-25 and using Intel Core i7 2.9 GHz without
multi-threading.

theory AKE_over_voice_with_identity_protecction
begin

builtins: diffie-hellman, signing, hashing, symmetric-encryption

// Generation of the key pair

rule Generate_pk:
[ Fr(~ltk) ]
--[ Generate($U) ]->
[ !Ltk( $U, ~ltk ), !Pk( $U, pk(~ltk) ) ]

// Adversary reveals the secret key

rule Reveal_ltk:
[ !Ltk( A, ltk ) ]

--[ LtkReveal( A ) ]->
[ Out(ltk) ]

// Authenticated channel

rule VoiceChannelOut_Authenticated:
[ Out_A( $A, $B, x ) ] --[ ChanOut_A( $A, $B, x ) ]->

[ !Auth( $A, x ), Out(< $A, $B, x >) ]

rule VoiceChannelIn_Authenticated:
[ !Auth( $A, x ), In($B) ] --[ ChanIn_A( $A, $B, x ) ]->

[ In_A( $A, $B, x ) ]

8. https://github.com/PiotrKrasnowski/AKE_over_Voice
9. https://tamarin-prover.github.io/

https://github.com/PiotrKrasnowski/AKE_over_Voice
https://tamarin-prover.github.io/
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// Protocol rules

rule Alice_1:
[ Fr(~ekA)
, Fr(~NA1)
, Fr(~NA2)
, Fr(~RA) ]
-->
[ Alice_1( $A, ~NA1, ~NA2, ~ekA, ~RA )
, Out(< ~NA1, ’g’ ^ ~ekA, h(< ~NA1, ’g’ ^ ~ekA, ~RA >) >) ]

rule Alice_2:
[ Alice_1( $A, ~NA1, ~NA2, ~ekA, ~RA)
, !Ltk( $A, ltkA )
, In(< NB1, Y, RB, senc(< $B, NB2 >,

h(< Y ^ ~ekA, ’B1’, NB1, ~NA1 >)) >) ]
--[ Running( ’B’, $B, $A, < $A, $B, ~NA2, NB2, Y ^ ~ekA >) ]->

[ Out(< ~RA, senc(< $A, ~NA2, sign{ $B, NB2, Y, $A, ~NA2,
’g’ ^ ~ekA }ltkA >,

h(< Y ^ ~ekA, ’A’, ~NA1, NB1 >)) >)
, Alice_2( $A, $B, ~NA1, ~NA2, NB1, NB2, ~RA, RB, ~ekA, Y ) ]

rule Alice_3:
[ Alice_2( $A, $B, ~NA1, ~NA2, NB1, NB2, ~RA, RB, ~ekA, Y )
, !Pk( $B, pk(ltkB) )
, In( senc( sign{ $A, ~NA2, ’g’ ^ ~ekA, $B, NB2, Y }ltkB,

h(< Y ^ ~ekA, ’B2’, NB1, ~NA1 >))) ]
--[ SessionKey( $A, $B, < $A, $B, ~NA2, NB2, Y ^ ~ekA >,

h(< ~RA, RB, NB1, Y >) )
, Commit_S( ’A’, $A, $B, < $A, $B, ~NA2, NB2, Y ^ ~ekA >,

h(< ~RA, RB, NB1, Y >) ) ]->
[ Out_A( $A, $B, h(< ~RA, RB, NB1, Y >) ) ]

rule Alice_3_nosign:
[ Alice_2( $A, $B, ~NA1, ~NA2, NB1, NB2, ~RA, RB, ~ekA, Y )
, In( senc( S, h(< Y ^ ~ekA, ’B2’, NB1, ~NA1 >))) ]

--[ SessionKey( $A, $B, < $A, $B, ~NA2, NB2, Y ^ ~ekA >,
h(< ~RA, RB, NB1, Y >) )

, Commit( ’A’, $A, $B, < $A, $B, ~NA2, NB2, Y ^ ~ekA >,
h(< ~RA, RB, NB1, Y >) ) ]->

[ Out_A( $A, $B, h(< ~RA, RB, NB1, Y >) ) ]
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rule Bob_1:
[ Fr(~ekB)
, Fr(~NB1)
, Fr(~NB2)
, Fr(~RB)
, In(< NA1, X, hRA >)
]

-->
[ Bob_1( $B, ~NB1, ~NB2, NA1, ~ekB, X, ~RB, hRA)
, Out(< ~NB1, ’g’ ^ ~ekB, ~RB, senc(< $B, ~NB2 >,

h(< X ^ ~ekB, ’B1’, ~NB1, NA1 >)) >) ]

rule Bob_2:
[
Bob_1( $B, ~NB1, ~NB2, NA1, ~ekB, X, ~RB, hRA )

, !Ltk( $B, ltkB )
, !Pk( $A, pk(ltkA) )
, In(< RA, senc(< $A, NA2, sign{ $B, ~NB2, ’g’ ^ ~ekB, $A, NA2, X }ltkA >,

h(< X ^ ~ekB, ’A’, NA1, ~NB1 >)) >) ]
--[ ComparehRA( $B, $A, hRA, h(< NA1, X, RA >) )

, Running( ’A’, $A, $B, < $A, $B, NA2, ~NB2, X ^ ~ekB >)
, Commit_S( ’B’, $B, $A, < $A, $B, NA2, ~NB2, X ^ ~ekB >,

h(< RA, ~RB, ~NB1, ’g’ ^ ~ekB >) )
, SessionKey( $B, $A, < $A, $B, NA2, ~NB2, X ^ ~ekB >,

h(< RA, ~RB, ~NB1, ’g’ ^ ~ekB >) ) ]->
[ Out( senc(< sign{ $A, NA2, X, $B, ~NB2, ’g’ ^ ~ekB }ltkB >,

h(< X ^ ~ekB, ’B2’, ~NB1, NA1 >)))
, Out_A( $B, $A, h(< RA, ~RB, ~NB1, ’g’ ^ ~ekB >) ) ]

rule Bob_2_nosign:
[ Bob_1( $B, ~NB1, ~NB2, NA1, ~ekB, X, ~RB, hRA )
, !Ltk( $B, ltkB )
, In(< RA, senc(< $A, NA2, sign{ $B, ~NB2, ’g’ ^ ~ekB, $A, NA2, X }ltkA >,

h(< X ^ ~ekB, ’A’, NA1, ~NB1 >)) >) ]
--[ ComparehRA( $B, $A, hRA, h(< NA1, X, RA >) )

, Running( ’A’, $A, $B, < $A, $B, NA2, ~NB2, X ^ ~ekB >)
, Commit( ’B’, $B, $A, < $A, $B, NA2, ~NB2, X ^ ~ekB >,

h(< RA, ~RB, ~NB1, ’g’ ^ ~ekB >) )
, SessionKey( $B, $A, < $A, $B, NA2, ~NB2, X ^ ~ekB >,

h(< RA, ~RB, ~NB1, ’g’ ^ ~ekB >) ) ]->
[ Out( senc(< sign{ $A, NA2, X, $B, ~NB2, ’g’ ^ ~ekB }ltkB >,

h(< X ^ ~ekB, ’B2’, ~NB1, NA1 >)))
, Out_A( $B, $A, h(< RA, ~RB, ~NB1, ’g’ ^ ~ekB >) ) ]
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// this restriction obliges Bob to verify the received hash
restriction Verify_hRA:

"All u1 u2 x y #i. ComparehRA( u1, u2, x, y ) @i ==> x = y"

rule Compare_SAS:
[ In_A( $A, $B, sequenceA ), In_A( $B, $A, sequenceB ) ]
--[ CompareSAS( ’A’, $A, $B, sequenceA, sequenceB )

, CompareSAS( ’B’, $B, $A, sequenceB, sequenceA ) ]-> []

// lemmas

lemma executable_SAS :
exists-trace

"Ex A B sessKey SAS #i #j #k.
Commit( ’A’, A, B, sessKey, SAS ) @ i &
Commit( ’B’, B, A, sessKey, SAS ) @ j &
CompareSAS( ’A’, A, B, SAS, SAS ) @ k &
CompareSAS( ’B’, B, A, SAS, SAS ) @ k &
not( A = B ) &
not( Ex U #m . LtkReveal(U) @ m )"

lemma executable_signature :
exists-trace
"Ex A B sessKey SAS #i #j.

Commit_S( ’A’, A, B, sessKey, SAS ) @ i &
Commit_S( ’B’, B, A, sessKey, SAS ) @ j &
not( A = B ) &
not( Ex U #k . LtkReveal(U) @ k )"

// authentication lemmas

lemma Non_Injective_Agreement :
" //signed
(
All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> ( Ex #j. Running( role, U1, U2, sessKey ) @ j )

// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)



196 ANNEXES

& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #j.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ j & not( U1 = U2 )
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> ( Ex #k. Running( role, U1, U2, sessKey) @ k)

// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)"

lemma Non_Injective_Agreement_no_sign_nor_SAS :
exists-trace
"not All role U1 U2 sessKey SAS #i.

// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i
// but U2 was NOT running the protocol with U1
==> ( Ex #k. Running( role, U1, U2, sessKey ) @ k )
// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )"

lemma Injective_Agreement :
" //signed
(
All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> (Ex #j. Running( role, U1, U2, sessKey ) @ j & j < i
// and there is a unique matching instance
& not ( Ex U3 U4 #i2. Commit_S( role, U3, U4, sessKey, SAS )

@i2 & not ( #i2 = #i ) )
& not ( Ex U3 U4 #i2. Commit( role, U3, U4, sessKey, SAS )

@i2 & not ( #i2 = #i ) ) )
// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)
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& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #j.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i & not( U1 = U2 ) &
CompareSAS( role, U1, U2, SAS, SAS ) @ j
// then U2 was running the protocol with U1
// and both agreed on sessKey
==> ( Ex #k. Running( role, U1, U2, sessKey ) @ k & k < j

// and there is a unique matching instance
& not ( Ex U3 U4 #i2. Commit_S( role, U3, U4, sessKey, SAS )

@ i2 & not ( #i2 = #i ) )
& not ( Ex U3 U4 #i2. Commit( role, U3, U4, sessKey, SAS )

@ i2 & not ( #i2 = #i ) ) )
// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )

)"

lemma Injective_Agreement_no_sign_nor_SAS :
exists-trace
"not All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit( role, U1, U2, sessKey, SAS ) @ i & not( U1 = U2 )
// but U2 was NOT running the protocol with U1
// or there is another matching instance
==> (Ex #k. Running( role, U1, U2, sessKey ) @ k & k < i
& not (Ex U3 U4 #i2. Commit_S( role, U3, U4, sessKey, SAS )

@ i2 & not (#i2 = #i ) )
& not (Ex U3 U4 #i2. Commit( role, U3, U4, sessKey, SAS )

@ i2 & not (#i2 = #i ) ) )
// or the adversary revealed a secret key of the user U2
| ( Ex #r. LtkReveal(U2) @ r & r < i )"



198 ANNEXES

// secrecy lemmas

lemma Session_Key_Secrecy :
" //signed
(
All role U1 U2 sessKey SAS #i #l.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
Commit_S( role, U1, U2, sessKey, SAS ) @ i &
// but the adversary knows the key anyway
K(sessKey) @ l
// then the adversary revealed a secret key of the user U2
==>
Ex #r. LtkReveal(U2) @ r

)
& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #k #l.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ k & not( U1 = U2 ) &
// but the adversary knows the key anyway
K(sessKey) @ l
// then the adversary revealed a secret key of the user U2
==>
(Ex #r. LtkReveal(U2) @ r)

)"

lemma Session_Key_Secrecy_no_sign_nor_SAS :
exists-trace
"not All U1 U2 sessKey SAS #i #j.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
// but the adversary knows the key anyway
K(sessKey) @ j
==>
// then the adversary revealed a secret key of the user U2
Ex #r. LtkReveal(U2) @ r"
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lemma Perfect_Forward_Secrecy :
" //signed
(
All role U1 U2 sessKey SAS #i #l.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
Commit_S( role, U1, U2, sessKey, SAS ) @ i &
// but the adversary knows the key anyway
K(sessKey) @ l
==>
// then the adversary revealed
// a secret key of the user U2 earlier
Ex #r. LtkReveal(U2) @ r & r < i

)
& // unsigned & SAS compared
(
All role U1 U2 sessKey SAS #i #k #l.

// user U1 playing a role ’role’
// completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ k & not( U1 = U2 ) &
// but the adversary knows the key anyway
K(sessKey) @ l
==>
// then the adversary revealed
// a secret key of the user U2 earlier
(Ex #r. LtkReveal(U2) @ r & r < i)

)"

// other lemmas

lemma Impersonation_with_signature :
"All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS )

@ i & not( U1 = U2 ) &
// but U2 was NOT running the protocol
// with U1 (adversary impersonated U2)
not( Ex #j. Running( role, U1, U2, sessKey )

@ j & j < i )
// then the adversary revealed
// a secret key of the user U2 earlier
==>
Ex #r. LtkReveal(U2) @ r & r < i "
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lemma Reflection_with_signature :
"All role U1 U2 sessKey SAS #i.
// user U1 playing a role ’role’
// completed a run presumably with U2
Commit_S( role, U1, U2, sessKey, SAS ) @ i &
// and was not running the protocol as both roles at the same time
// (this configuration is not possible in the analyzed case)
// (moreover, U1 would be aware of the double role)
not( Ex role2 #j. Running( role2, U1, U2, sessKey )

@ j & not( role = role2 ) )
==>
// then U1 is different than U2
not( U1 = U2 )"

lemma Reflection_no_signature :
exists-trace
"not All role U1 U2 sessKey SAS #i #j.
// user U1 playing a role ’role’

completed a run presumably with U2
SessionKey( U1, U2, sessKey, SAS ) @ i &
CompareSAS( role, U1, U2, SAS, SAS ) @ j &
// and was not running the protocol as both roles at the same time
// (this configuration is not possible in the analyzed case)
// (moreover, U1 would be aware of the double role)
not( Ex role2 #k. Running( role2, U1, U2, sessKey)

@ k & not( role = role2 ) )
==>
// but U1 is U2
not( U1 = U2 )"

end
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